There exist many results about the Diophantine equation $(q^n-1)/(q-1)=y^m$, where $m\ge 2$ and $n\geq 3$. In this paper, we suppose that $m=1$, $n$ is an odd integer and $q$ a power of a prime number. Also let $y$ be an integer such that the number of prime divisors of $y-1$ is less than or equal to $3$. Then we solve completely the Diophantine equation $(q^n-1)/(q-1)=y$ for infinitely many values of $y$. This result finds frequent applications in the theory of finite groups.
@article{119363, author = {Amir Khosravi and Behrooz Khosravi}, title = {On the Diophantine equation $\frac{q^n-1}{q-1}=y$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {44}, year = {2003}, pages = {1-7}, zbl = {1097.11015}, mrnumber = {2045841}, language = {en}, url = {http://dml.mathdoc.fr/item/119363} }
Khosravi, Amir; Khosravi, Behrooz. On the Diophantine equation $\frac{q^n-1}{q-1}=y$. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 1-7. http://gdmltest.u-ga.fr/item/119363/
Rational approximation to algebraic number of small height: The Diophantine equation $|ax^n-by^n|=1$, J. Reine Angew Math. 535 (2001), 1-49. (2001) | MR 1837094 | Zbl 1009.05033
Linear forms in $p$-adic logarithms and the Diophantine equation $(x^n-1)/(x-1)=y^q$, Math. Proc. Cambridge Philos. Soc. 127 (1999), 373-381. (1999) | MR 1713116
Minoration effective de la distance $p$-adique entre puissances de nombres algébriques, J. Number Theory 61 (1996), 311-342. (1996) | MR 1423057 | Zbl 0870.11045
On integers with identical digits, Mathematika 46 (1999), 411-417. (1999) | MR 1832631 | Zbl 1033.11012
On the Diophantine equation $(x^n-1)/(x-1)=y^q$, Math. Proc. Cambridge Philos. Soc. 127 (1999), 353-372. (1999) | MR 1713115
On the Diophantine equation $(x^n-1)/(x-1)=y^q$, Pacific J. Math. 193 (2) (2000), 257-268. (2000) | MR 1755817
Sur l'equation diophantiene $(x^n-1)/(x-1)=y^q$ III, (French), Proc. London Math. Soc. III. Ser. 84 (1) (2002), 59-78. (2002) | MR 1863395
A Diophantine equation arises in the theory of finite groups, Adv. Math. 17 (1975), 25-29. (1975) | MR 0371812
Problems and some results concerning the Diophantine equation $1+A+A^2+\cdots+A^{x-1}=P^y$, Rocky Mountain J. Math. 15 (1985), 327-329. (1985) | MR 0823244
Subgroups of prime power index in a simple group, J. Algebra 81 (1983), 304-311. (1983) | MR 0700286 | Zbl 0515.20011
An Introduction to Theory of Numbers, Oxford University Press, 1962.
A note on the Diophantine equation $(x^m-1)/(x-1)=y^n$, Acta Arith. 64 (1993), 19-28. (1993) | MR 1220482 | Zbl 0802.11011
A note on perfect powers of the form $x^{m-1}+\cdots+x+1$, Acta Arith. 69 (1995), 91-98. (1995) | MR 1310844 | Zbl 0819.11012
Noen setninger om ubestemte likninger av formen $(x^n-1)/(x-1)=y^q$, Norsk. Mat. Tidsskr. 25 (1943), 17-20. (1943)
Fundamental Number Theory with Applications, CRC Press, New York, 1998. | MR 2404578
Note sur l'equation indéterminée $(x^n-1)/(x-1)=y^q$, Norsk. Mat. Tidsskr. 2 (1920), 75-78. (1920)
The equation $(x^n-1)/(x-1)=y^q$ with $x$ square,, Math. Proc. Cambridge Philos. Soc. 125 (1999), 1-19. (1999) | MR 1645497
Exponential Diophantine equation involving product of consecutive integers and related equations, (English) Bambah, R.P. (Ed.) et al., Number theory; Basel, Birkhäuser, Trends in Mathematics, (2000), 463-495. | MR 1764814
New applications of Diophantine approximation to Diophantine equations, Math. Scand. 39 (1976), 5-18. (1976) | MR 0447110
Exponential Diophantine equations, Cambridge Tracts in Mathematics 87 (1986), Cambridge University Press, Cambridge. | MR 0891406 | Zbl 1156.11015
On the Diophantine equation $(x^m-1)/(x-1)=y^n$, Acta Arith. 83 (1995), 363-366. (1995) | Zbl 0870.11019