It is shown that for every numbers $m_1, m_2 \in \{3, \dots, \omega\}$ there is a strongly self-homeomorphic dendrite which is not pointwise self-homeomorphic. The set of all points at which the dendrite is pointwise self-homeomorphic is characterized. A general method of constructing a large family of dendrites with the same property is presented.
@article{119355, author = {Janusz Jerzy Charatonik and Pawe\l\ Krupski}, title = {On self-homeomorphic dendrites}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {665-673}, zbl = {1090.54030}, mrnumber = {2045788}, language = {en}, url = {http://dml.mathdoc.fr/item/119355} }
Charatonik, Janusz Jerzy; Krupski, Paweł. On self-homeomorphic dendrites. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 665-673. http://gdmltest.u-ga.fr/item/119355/
Strongly chaotic dendrites, Colloq. Math. 70 (1996), 181-190. (1996) | MR 1380374 | Zbl 0860.54030
Dendrites, Aportaciones Mat. Comun. 22 (1998), 227-253. (1998) | MR 1787331 | Zbl 0967.54034
On self-homeomorphic spaces, Topology Appl. 55 (1994), 215-238. (1994) | MR 1259506 | Zbl 0788.54040
Self-homeomorphic star figures, Continuum Theory and Dynamical Systems. Papers of the conference/workshop on continuum theory and dynamical systems held at Lafayette, LA (USA), Thelma West M. Dekker New York (1993), Lect. Notes Pure Appl. Math. 149 283-290. (1993) | MR 1235359 | Zbl 0826.54027
Topology, vol. 2 Academic Press and PWN New York, London, Warszawa (1968). (1968) | MR 0259836
Continuum Theory: An Introduction, M. Dekker (1992). (1992) | MR 1192552 | Zbl 0757.54009
An example of strongly self-homeomorphic dendrite not pointwise self-homeomorphic, Comment. Math. Univ. Carolinae 40 (1999), 571-576. (1999) | MR 1732479 | Zbl 1010.54038