It is proved that if a regular space $X$ is the union of a finite family of metrizable subspaces then $X$ is a $D$-space in the sense of E. van Douwen. It follows that if a regular space $X$ of countable extent is the union of a finite collection of metrizable subspaces then $X$ is Lindelöf. The proofs are based on a principal result of this paper: every space with a point-countable base is a $D$-space. Some other new results on the properties of spaces which are unions of a finite collection of nice subspaces are obtained.
@article{119354, author = {Aleksander V. Arhangel'skii and Raushan Z. Buzyakova}, title = {Addition theorems and $D$-spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {653-663}, zbl = {1090.54017}, mrnumber = {2045787}, language = {en}, url = {http://dml.mathdoc.fr/item/119354} }
Arhangel'skii, Aleksander V.; Buzyakova, Raushan Z. Addition theorems and $D$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 653-663. http://gdmltest.u-ga.fr/item/119354/
Remark on the concept of compactness, Portugal. Math. 9 (1950), 141-143. (1950) | MR 0038642 | Zbl 0039.18602
On some properties of linearly Lindelöf spaces, Topology Proc. 23 (1998), 1-11. (1998) | MR 1800756 | Zbl 0964.54018
Additivity of metrizability and related properties, Topology Appl. 84 (1998), 91-103. (1998) | MR 1611277 | Zbl 0991.54032
On irreducible spaces, 2, Pacific J. Math. 62.2 (1976), 351-357. (1976) | MR 0418037
A study of $D$-spaces, Topology Proc. 16 (1991), 7-15. (1991) | MR 1206448 | Zbl 0787.54023
Covering properties, in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 9, pp.347-422; North-Holland, Amsterdam, New York, Oxford, 1984. | MR 0776628 | Zbl 0569.54022
On $D$-property of strong $\Sigma $-spaces, Comment. Math. Univ. Carolinae 43.3 (2002), 493-495. (2002) | MR 1920524 | Zbl 1090.54018
A collectionwise normal, weakly $\theta $-refinable Dowker space which is neither irreducible nor realcompact, Topology Proc. 1 (1976), 66-77. (1976) | Zbl 0397.54019
Concerning certain minimal cover refinable spaces, Fund. Math. 76 (1972), 213-222. (1972) | MR 0372818
Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81.2 (1979), 371-377. (1979) | MR 0547605 | Zbl 0409.54011
A real, weird topology on reals, Houston J. Math. 13.1 (1977), 141-152. (1977) | MR 0433414
On the metrizability number and related invariants of spaces, 2, Topology Appl. 71.2 (1996), 179-191. (1996) | MR 1399555
On locally compact Hausdorff spaces with finite metrizability number, Topology Appl. 114.3 (2001), 285-293. (2001) | MR 1838327 | Zbl 1012.54002
Another note on Eberlein compacts, Pacific J. Math. 72 (1977), 497-499. (1977) | MR 0478093 | Zbl 0344.54018
Compact $\sigma $-metric spaces are sequential, Proc. Amer. Math. Soc. 68 (1978), 339-343. (1978) | MR 0467677
Dowker spaces, in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 17, pp.761-780; North-Holland, Amsterdam, New York, Oxford, 1984. | MR 0776636 | Zbl 0566.54009
On compactness of countably compact spaces having additional structure, Trans. Moscow Math. Soc. 2 (1984), 149-167. (1984)
Point-countability and compactness, Proc. Amer. Math. Soc. 55 (1976), 427-431. (1976) | MR 0400166 | Zbl 0323.54013
Characterizations of developable spaces, Canad. J. Math. 17 (1965), 820-830. (1965) | MR 0182945
A covering property which implies isocompactness. 1, Proc. Amer. Math. Soc. 79.2 (1980), 331-334. (1980) | MR 0565365