We prove that if $X^n$ is a union of $n$ subspaces of pointwise countable type then the space $X$ is of pointwise countable type. If $X^\omega $ is a countable union of ultracomplete spaces, the space $X^\omega $ is ultracomplete. We give, under CH, an example of a Čech-complete, countably compact and non-ultracomplete space, giving thus a partial answer to a question asked in [BY2].
@article{119341, author = {Miguel L\'opez de Luna and Vladimir Vladimirovich Tkachuk}, title = {\v Cech-completeness and ultracompleteness in ``nice spaces''}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {515-524}, zbl = {1090.54023}, mrnumber = {1920527}, language = {en}, url = {http://dml.mathdoc.fr/item/119341} }
de Luna, Miguel López; Tkachuk, Vladimir Vladimirovich. Čech-completeness and ultracompleteness in “nice spaces”. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 515-524. http://gdmltest.u-ga.fr/item/119341/
Bicompact sets and the topology of spaces, Dokl. Akad. Nauk SSSR 150 (1963), 9-12. (1963) | MR 0150733
Ultracomplete topological spaces, preprint. | MR 1924245 | Zbl 1019.54015
Sums and products of ultracomplete topological spaces, Topology Appl., to appear. | MR 1919293 | Zbl 1019.54015
Additivity of metrizability and related properties, Topology Appl. (1998), 84 91-103. (1998) | MR 1611277 | Zbl 0991.54032
Some new results on Čech-complete spaces, Topology Proceedings, vol.24, 1999. | MR 1876382
Almost metrizable topological groups (in Russian), Dokl. Akad. Nauk SSSR (1965), 161.2 281-284. (1965) | MR 0204565
The countable character of $X$ in $\beta X$ compared with the countable character of the diagonal in $X\times X$, Vestnik Moskovskogo Universiteta, Matematika, 42 (1987), 5 16-19. (1987) | MR 0913263 | Zbl 0652.54003
Finite and countable additivity topological properties in nice spaces, Trans. Amer. Math. Soc. (1994), 341 585-601. (1994) | MR 1129438
On a property of bicompacta, Seminar on General Topology, ed. by P.S. Alexandroff, Mosc. Univ. P.H., Moscow, 1981, pp.149-156. | MR 0656955 | Zbl 0491.54002