This paper deals with questions of how many compact subsets of certain kinds it takes to cover the space $^\omega \omega $ of irrationals, or certain of its subspaces. In particular, given $f\in {}^\omega (\omega \setminus \{0\})$, we consider compact sets of the form $\prod_{i\in \omega }B_i$, where $|B_i|= f(i)$ for all, or for infinitely many, $i$. We also consider ``$n$-splitting'' compact sets, i.e., compact sets $K$ such that for any $f\in K$ and $i\in \omega $, $|\{g(i):g\in K, g\restriction i=f\restriction i\}|= n$.
@article{119339, author = {Gary Gruenhage and Ronnie Levy}, title = {Covering $^\omega\omega$ by special Cantor sets}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {497-509}, zbl = {1072.03028}, mrnumber = {1920525}, language = {en}, url = {http://dml.mathdoc.fr/item/119339} }
Gruenhage, Gary; Levy, Ronnie. Covering $^\omega\omega$ by special Cantor sets. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 497-509. http://gdmltest.u-ga.fr/item/119339/
Set Theory: On the Structure of the Real Line, A K Peters, 1995. | MR 1350295
Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), 3 271-288. (1979) | MR 0556894 | Zbl 0427.03043
Theory of Ultrafilters, Springer-Verlag, Berlin-Heidelberg-New York, 1974. | MR 0396267 | Zbl 0298.02004
The integers and topology, in: Handbook of Set-theoretic Topology, K. Kunen and J.E. Vaughan, Eds., North-Holland, Amsterdam, 1984, pp.111-167. | MR 0776619 | Zbl 0561.54004
Tools for your forcing construction, in: Set Theory of the Reals, H. Judah, Ed., Israel Math. Conf. Proceedings 6 (1993), pp.305-360. | MR 1234283 | Zbl 0834.03016
Many simple cardinal invariants, Arch. Math. Logic 32 (1993), 3 203-221. (1993) | MR 1201650 | Zbl 0786.03030
Set Theory, Studies on Logic and the Foundations of Mathematics, North-Holland, 1980. | MR 0597342 | Zbl 0960.03033
The ideal determined by the unsymmetric game, Proc. Amer. Math. Soc. 117 (1993), 3 823-831. (1993) | MR 1112500 | Zbl 0778.03016
Mycielski ideals generated by uncountable systems, Colloq. Math. 66 (1994), 2 187-200. (1994) | MR 1268063 | Zbl 0833.04002