It is shown that every strong $\Sigma$ space is a $D$-space. In particular, it follows that every paracompact $\Sigma$ space is a $D$-space.
@article{119338, author = {Raushan Z. Buzyakova}, title = {On $D$-property of strong $\Sigma$ spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {493-495}, zbl = {1090.54018}, mrnumber = {1920524}, language = {en}, url = {http://dml.mathdoc.fr/item/119338} }
Buzyakova, Raushan Z. On $D$-property of strong $\Sigma$ spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 493-495. http://gdmltest.u-ga.fr/item/119338/
private communications, 2001.
A study of $D$-spaces, Topology Proc. 16 (1991), 7-15. (1991) | MR 1206448 | Zbl 0787.54023
Another study of $D$-spaces, Questions Answers Gen. Topology 14:1 (1996), 73-76. (1996) | MR 1384056 | Zbl 0842.54033
Correction: another study of $D$-spaces, Questions Answers Gen. Topology 16:1 (1998), 77-78. (1998) | MR 1614761
Yet another property of the Sorgenfrey line, Topology Proc. 6:1 (1981), 31-43. (1981) | MR 0650479
Simultaneous extension of continuous functions, Thesis, Free University, Amsterdam, 1975.
Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), 371-377. (1979) | MR 0547605 | Zbl 0409.54011
A note on paracompactness in generalized ordered spaces, Proc. Amer. Math. Soc. 125 (1997), 1237-1245. (1997) | MR 1396999 | Zbl 0885.54023
General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. | MR 1039321 | Zbl 0684.54001
$D$-spaces, Topology Appl. 114 (2001), 261-271. (2001) | MR 1838325 | Zbl 0983.54024