On the Inequality for BIBDs with Special Parameters
Kageyama, Sanpei
Ann. Statist., Tome 1 (1973) no. 2, p. 204-207 / Harvested from Project Euclid
For a $\mu$-resolvable Balanced Incomplete Block Design (BIBD) with parameters $v, b = mt, r = \mu t, k$ and $\lambda$, Kageyama (1973) obtained an inequality $b \geqq v + t - 1$. The main purpose of this note is to improve $b \geqq v + t - 1$ to $b \geqq \max \{v + t - 1, (m^2\lambda + m)/\mu^2\}$. This inequality is also improved further for a $\mu$-resolvable BIBD which is not affine $\mu$-resolvable.
Publié le : 1973-01-14
Classification: 
@article{1193342401,
     author = {Kageyama, Sanpei},
     title = {On the Inequality for BIBDs with Special Parameters},
     journal = {Ann. Statist.},
     volume = {1},
     number = {2},
     year = {1973},
     pages = { 204-207},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1193342401}
}
Kageyama, Sanpei. On the Inequality for BIBDs with Special Parameters. Ann. Statist., Tome 1 (1973) no. 2, pp.  204-207. http://gdmltest.u-ga.fr/item/1193342401/