Generalized Bayes Minimax Estimators of the Multivariate Normal Mean with Unknown Covariance Matrix
Lin, Pi-Erh ; Tsai, Hui-Liang
Ann. Statist., Tome 1 (1973) no. 2, p. 142-145 / Harvested from Project Euclid
Let $\mathbf{X}$ be a $p$-variate $(p \geqq 3)$ vector normally distributed with mean $\mathbf{\theta}$ and covariance matrix $\Sigma$, positive definite but unknown. Let $A$ be a $p \times p$ Wishart matrix with parameters $(n, \Sigma)$, independent of $\mathbf{X}$. To estimate $\mathbf{\theta}$ relative to quadratic loss function $(\hat{\mathbf{\theta}} - \mathbf{\theta})'\Sigma^{-1}(\hat{\mathbf{\theta}} - \mathbf{\theta})$, we obtain a family of minimax estimators $\mathbf{\delta}(\mathbf{X}, \mathbf{A})$ based on $\mathbf{X}$ and $\mathbf{A}$ through $\mathbf{X}$ and $\mathbf{X}'\mathbf{A}^{-1}\mathbf{X}$. It is shown that there are minimax estimators of the form $\mathbf{\delta}(\mathbf{X}, \mathbf{A})$ which are also generalized Bayes. A special case where $\Sigma = \sigma^2\mathbf{I}$ is also considered.
Publié le : 1973-01-14
Classification: 
@article{1193342390,
     author = {Lin, Pi-Erh and Tsai, Hui-Liang},
     title = {Generalized Bayes Minimax Estimators of the Multivariate Normal Mean with Unknown Covariance Matrix},
     journal = {Ann. Statist.},
     volume = {1},
     number = {2},
     year = {1973},
     pages = { 142-145},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1193342390}
}
Lin, Pi-Erh; Tsai, Hui-Liang. Generalized Bayes Minimax Estimators of the Multivariate Normal Mean with Unknown Covariance Matrix. Ann. Statist., Tome 1 (1973) no. 2, pp.  142-145. http://gdmltest.u-ga.fr/item/1193342390/