Tightness of compact spaces is preserved by the $t$-equivalence relation
Okunev, Oleg
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002), p. 335-342 / Harvested from Czech Digital Mathematics Library

We prove that if there is an open mapping from a subspace of $C_p(X)$ onto $C_p(Y)$, then $Y$ is a countable union of images of closed subspaces of finite powers of $X$ under finite-valued upper semicontinuous mappings. This allows, in particular, to prove that if $X$ and $Y$ are $t$-equivalent compact spaces, then $X$ and $Y$ have the same tightness, and that, assuming $2^{\frak t}>\frak c$, if $X$ and $Y$ are $t$-equivalent compact spaces and $X$ is sequential, then $Y$ is sequential.

Publié le : 2002-01-01
Classification:  46E10,  54A10,  54A25,  54B05,  54B10,  54C35,  54C60,  54D20,  54D30,  54D55
@article{119323,
     author = {Oleg Okunev},
     title = {Tightness of compact spaces is preserved by the $t$-equivalence relation},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {43},
     year = {2002},
     pages = {335-342},
     zbl = {1090.54004},
     mrnumber = {1922131},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119323}
}
Okunev, Oleg. Tightness of compact spaces is preserved by the $t$-equivalence relation. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 335-342. http://gdmltest.u-ga.fr/item/119323/

Arhangel'Skii A.V. The spectrum of frequencies of a topological space and the product operation, Trudy Moskov. Mat. Obshch. 40 (1979), 171-206 Russian English translation: Trans. Moscow Math. Soc. (1981), 40 2 169-199. (1981) | MR 0550259

Arhangel'Skii A.V. Problems in $C_p$-theory, 603-615 Open Problems in Topology J. van Mill and G.M. Reed North-Holland (1990). (1990)

Arhangel'Skii A.V. Topological Function Spaces, Kluwer Acad. Publ. Dordrecht (1992). (1992) | MR 1485266

Van Douwen E.K. The Integers and Topology, 111-167 Handbook of Set-Theoretic Topology K. Kunen and J.E. Vaughan North-Holland Amsterdam (1984). (1984) | MR 0776622 | Zbl 0561.54004

Engelking R. General Topology, PWN (1977), Warszawa. (1977) | MR 0500780 | Zbl 0373.54002

Gul'Ko S.P.; Khmyleva T.E. Compactness is not preserved by the relation of $t$-equivalence, Matematicheskie Zametki 39 6 (1986), 895-903 Russian English translation: Math. Notes 39 5-6 (1986), 484-488. (1986) | MR 0855937

Malykhin V.I. On tightness and the Suslin number in $\exp X$ and in a product of spaces, Dokl. Akad. Nauk SSSR 203 (1972), 1001-1003 Russian English translation: Soviet Math. Dokl. (1972), 13 496-499. (1972) | MR 0300241

Okunev O. Weak topology of a dual space and a $t$-equivalence relation, Matematicheskie Zametki 46 1 53-59 (1989), Russian English translation: Math. Notes 46 1-2 534-536 (1989). (1989) | MR 1019256

Okunev O. A method for constructing examples of $M$-equivalent spaces, Topology Appl. 36 157-171 (1990), Correction Topology Appl. 49 191-192 (1993). (1993) | MR 1068167 | Zbl 0779.54008

Ranchin D. Tightness, sequentiality and closed coverings, Dokl. AN SSSR 32 (1977), 1015-1018 Russian English translation: Soviet Math. Dokl. (1977), 18 1 196-199. (1977) | MR 0436074 | Zbl 0371.54010

Tkachuk V.V. Duality with respect to the functor $C_p$ and cardinal invariants of the type of the Souslin number, Matematicheskie Zametki 37 3 (1985), 441-445 Russian English translation: Math. Notes, 37 3 (1985), 247-252. (1985) | MR 0790433

Tkachuk V.V. Some non-multiplicative properties are $l$-invariant, Comment. Math. Univ. Carolinae 38 1 (1997), 169-175. (1997) | MR 1455481 | Zbl 0886.54005