We study the geometrical properties of a unit vector field on a Riemannian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature $K$, we give a description of the totally geodesic unit vector fields for $K=0$ and $K=1$ and prove a non-existence result for $K\ne 0,1$. We also found a family $\xi_\omega$ of vector fields on the hyperbolic 2-plane $L^2$ of curvature $-c^2$ which generate foliations on $T_1L^2$ with leaves of constant intrinsic curvature $-c^2$ and of constant extrinsic curvature $-\frac{c^2}{4}$.
@article{119321, author = {Yampolsky, Alexander L. Yampolsky, Alexander L.}, title = {On the intrinsic geometry of a unit vector field}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {299-317}, zbl = {1090.54013}, mrnumber = {1922129}, language = {en}, url = {http://dml.mathdoc.fr/item/119321} }
Yampolsky, Alexander L., Yampolsky, Alexander L. On the intrinsic geometry of a unit vector field. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 299-317. http://gdmltest.u-ga.fr/item/119321/
The Geometry of Vector Fields, Gordon & Breach Publ., 2000. | MR 1749926 | Zbl 0965.53002
Harmonic and minimal radial vector fields, Acta Math. Hungar. 90 (2001), 317-331. (2001) | MR 1910716 | Zbl 1012.53040
Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl. 13 (2000), 77-93. (2000) | MR 1775222 | Zbl 0973.53053
Characteristic reflections on unit tangent sphere bundle, Houston J. Math. 23 (1997), 427-448. (1997) | MR 1690045
The sectional curvature of the Sasaki metric of $T_1M^n$, Ukrain. Geom. Sb. 30 (1987), 10-17 English transl.: J. Soviet Math. 51 (1990), 5 2503-2508. (1990) | MR 0914771
On the volume of a unit vector field on the three-sphere, Comment. Math. Helv. 61 (1986), 177-192. (1986) | MR 0856085 | Zbl 0605.53022
Examples of minimal unit vector fields, Ann. Global Anal. Geom. 18 (2000), 385-404. | MR 1795104
Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold., J. Reine Angew. Math. 250 (1971), 124-129. (1971) | MR 0286028 | Zbl 0222.53044
On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. 10 (1958), 338-354. (1958) | MR 0112152 | Zbl 0086.15003
Tangent sphere bundle of a $2$-sphere, Tôhoku Math. J. 27 (1975), 45-57. (1975) | MR 0362149 | Zbl 0309.53036
On the mean curvature of a unit vector field, Math. Publ. Debrecen, 2002, to appear. | MR 1882460 | Zbl 1010.53012