Curvature homogeneous spaces whose curvature tensors have large symmetries
Tsukada, Kazumi
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002), p. 283-297 / Harvested from Czech Digital Mathematics Library

We study curvature homogeneous spaces or locally homogeneous spaces whose curvature tensors are invariant by the action of ``large" Lie subalgebras $\frak{h}$ of $\frak{so}(n)$. In this paper we deal with the cases of $\frak{h}=\frak{so}(r) \oplus \frak{so}(n-r)$ $(2\leq r \leq n-r)$, $\frak{so}(n-2)$, and the Lie algebras of Lie groups acting transitively on spheres, and classify such curvature homogeneous spaces or locally homogeneous spaces.

Publié le : 2002-01-01
Classification:  53B20,  53C30
@article{119320,
     author = {Kazumi Tsukada},
     title = {Curvature homogeneous spaces whose curvature tensors have large symmetries},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {43},
     year = {2002},
     pages = {283-297},
     zbl = {1090.53050},
     mrnumber = {1922128},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119320}
}
Tsukada, Kazumi. Curvature homogeneous spaces whose curvature tensors have large symmetries. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 283-297. http://gdmltest.u-ga.fr/item/119320/

Boeckx E.; Kowalski O.; Vanhecke L. Riemannian manifolds of conullity two, World Scientific, 1996. | MR 1462887 | Zbl 0904.53006

Borel A. Some remarks about Lie groups transitive on spheres and tori, Bull. Amer. Math. Soc. 55 (1949), 580-587. (1949) | MR 0029915 | Zbl 0034.01603

Borel A.; De Siebenthal J. Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200-221. (1949) | MR 0032659 | Zbl 0034.30701

Chi Q.S. Curvature characterization and classification of rank-one symmetric spaces, Pacific J. Math. 150 (1991), 31-42. (1991) | MR 1120711 | Zbl 0742.53018

Ferus D. Totally geodesic foliations, Math. Ann. 188 (1970), 313-316. (1970) | MR 0271872 | Zbl 0194.52804

Gilkey P.; Swann A.; Vanhecke L. Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford 46 (1995), 299-320. (1995) | MR 1348819 | Zbl 0848.53023

Iwahori N. Some remarks on tensor invariants $O(n)$, $U(n)$, $Sp(n)$, J. Math. Soc. Japan 10 (1958), 145-160. (1958) | MR 0124410

Kiyota Y.; Tsukada K. Curvature tensors and Singer invariants of four-dimensional homogeneous spaces, Comment. Math. Univ. Carolinae 40 (1999), 723-733. (1999) | MR 1756548 | Zbl 1020.53032

Montgomery D.; Samelson H. Transformation groups of spheres, Ann. Math. 44 (1943), 454-470. (1943) | MR 0008817 | Zbl 0063.04077

Nicolodi L.; Tricerri F. On two theorems of I.M. Singer about homogeneous spaces, Ann. Global Anal. Geom. 8 (1990), 193-209. (1990) | MR 1088511 | Zbl 0676.53058

Obata M. On subgroups of the orthogonal group, Trans. Amer. Math. Soc. 87 (1958), 347-358. (1958) | MR 0095205 | Zbl 0080.02204

Podestà F.; Tricerri F. Riemannian manifolds with special curvature tensors, Rend. Istit. Mat. Univ. Trieste 26 (1994), 95-101. (1994) | MR 1363915

Singer I.M. Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. (1960) | MR 0131248 | Zbl 0171.42503

Tricerri F.; Vanhecke L. Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398. (1981) | MR 0626479 | Zbl 0484.53014

Tsukada K. Curvature homogeneous hypersurfaces immersed in a real space form, Tôhoku Math. J. 40 (1988), 221-244. (1988) | MR 0943821 | Zbl 0651.53037

Tsukada K. The Singer invariant of homogeneous spaces, Proceedings of the Fourth International Workshop on Differential Geometry, Transilvania University Press, 1999, pp.274-280. | Zbl 1075.53520

Wang M.; Ziller W. Symmetric spaces and strongly isotropy irreducible spaces, Math. Ann. 296 (1993), 285-326. (1993) | MR 1219904 | Zbl 0804.53075

Ziller W. Homogeneous Einstein metrics on spheres and projective spaces, Math. Ann. 259 (1982), 351-358. (1982) | MR 0661203 | Zbl 0469.53043