Conformal deformations of the Riemannian metrics and homogeneous Riemannian spaces
Rodionov, Eugene D. ; Slavskii, Viktor V.
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002), p. 271-282 / Harvested from Czech Digital Mathematics Library

In this paper we investigate one-dimensional sectional curvatures of Riemannian manifolds, conformal deformations of the Riemannian metrics and the structure of locally conformally homogeneous Riemannian manifolds. We prove that the nonnegativity of the one-dimensional sectional curvature of a homogeneous Riemannian space attracts nonnegativity of the Ricci curvature and we show that the inverse is incorrect with the help of the theorems O. Kowalski-S. Nikčevi'c [K-N], D. Alekseevsky-B. Kimelfeld [A-K]. The criterion for existence of the left-invariant Riemannian metrics of positive one-dimensional sectional curvature on Lie groups is presented. Classification of the conformally deformed homogeneous Riemannian metrics of positive sectional curvature on homogeneous spaces is obtained. The notion of locally conformally homogeneous Riemannian spaces is introduced. It is proved that each such space is either conformally flat or conformally equivalent to a locally homogeneous Riemannian space.

Publié le : 2002-01-01
Classification:  53C20,  53C30
@article{119319,
     author = {Eugene D. Rodionov and Viktor V. Slavskii},
     title = {Conformal deformations of the Riemannian metrics and homogeneous Riemannian spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {43},
     year = {2002},
     pages = {271-282},
     zbl = {1090.53039},
     mrnumber = {1922127},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119319}
}
Rodionov, Eugene D.; Slavskii, Viktor V. Conformal deformations of the Riemannian metrics and homogeneous Riemannian spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 271-282. http://gdmltest.u-ga.fr/item/119319/

Alekseevsky D.V.; Kimelfeld B.N. The structure of homogeneous Riemannian spaces with zero Ricci curvature, Functional Anal. Appl. 9 (2), 5-11 (1975). (1975) | MR 0402650

Berestovsky V.N. Homogeneous Riemannian manifolds of positive Ricci curvature, Mat. Zametki 58 (3), 334-340 (1995). (1995) | MR 1368542

Berger M. Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa 15 179-246 (1961). (1961) | MR 0133083 | Zbl 0101.14201

Besse A.L. Einstein Manifolds, Springer-Verlag, Berlin, 1987. | MR 0867684 | Zbl 1147.53001

Collinson C.D. A comment on the integrability conditions of the conformal Killing equation, Gen. Relativity Gravitation 21 9 979-980 (1989). (1989) | MR 1008832 | Zbl 0675.53025

Ehrlich P. Conformal deformations and extremal paths in the space of Riemannian metrics, Math. Nachr. 72 137-140 (1976). (1976) | MR 0420703

Kowalski O. Counter-example to the ``second Singer's theorem'', Ann. Global Anal. Geom. 8 2 211-214 (1990). (1990) | MR 1088512 | Zbl 0736.53047

Kowalski O.; Nikčević S.Ž Eigenvalues of locally homogeneous riemannian $3$-manifolds, Geom. Dedicata 62 65-72 (1996). (1996) | MR 1400981

Milnor J. Curvature of left invariant metric on Lie groups, Adv. Math. 21 293-329 (1976). (1976) | MR 0425012

Reshetnyak Yu.G. Stability theorems in geometry and analysis, Mathematical Institute of the SB of RAS, Novosibirsk, 1996. | MR 1462616 | Zbl 0848.30013

Rodionov E.D. Homogeneous Riemannian Z-manifolds, PhD. dissertation, Mathematical Institute of the SB of RAS, 1982. | MR 0610778 | Zbl 0472.53051

Rodionov E.D; Slavskii V.V. Conformal deformations of the Riemannian metrics with sections of zero curvature on a compact manifold, Rep. of Acad. Sci. 373 (3), (2000), 300-303. (2000) | MR 1789653

Rodionov E.D.; Slavskii V.V. Locally conformally homogeneous Riemannian spaces, Journal of ASU 1 (19), (2001), 39-42.

Tricerri F. Locally homogeneous Riemannian manifolds, Rend. Semin. Mat. Torino 50 4 411-426 (1992). (1992) | MR 1261452 | Zbl 0793.53056

Tricerri F.; Vanhecke L. Homogeneous structures on Riemannian manifolds, London Mathematical Society Lecture Note Series, 83; Cambridge etc.: Cambridge University Press, VI, 125 pp. | MR 0712664 | Zbl 0641.53047

Wallach N. Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. of Math. 96 277-295 (1972). (1972) | MR 0307122 | Zbl 0261.53033

Yano K. The Theory of Lie Derivatives and its Applications, North-Holland Publishing Co., Amsterdam; P. Noordhoff Ltd., Groningen; Interscience Publishers Inc., New York, 1957. | MR 0088769 | Zbl 0077.15802