Homogeneous geodesics in a three-dimensional Lie group
Marinosci, Rosa Anna
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002), p. 261-270 / Harvested from Czech Digital Mathematics Library

O. Kowalski and J. Szenthe [KS] proved that every homogeneous Riemannian manifold admits at least one homogeneous geodesic, i.e\. one geodesic which is an orbit of a one-parameter group of isometries. In [KNV] the related two problems were studied and a negative answer was given to both ones: (1) Let $M=K/H$ be a homogeneous Riemannian manifold where $K$ is the largest connected group of isometries and $\dim M\geq 3$. Does $M$ always admit more than one homogeneous geodesic? (2) Suppose that $M=K/H$ admits $m = \dim M$ linearly independent homogeneous geodesics through the origin $o$. Does it admit $m$ mutually orthogonal homogeneous geodesics? In this paper the author continues this study in a three-dimensional connected Lie group $G$ equipped with a left invariant Riemannian metric and investigates the set of all homogeneous geodesics.

Publié le : 2002-01-01
Classification:  53C20,  53C22,  53C30
@article{119318,
     author = {Rosa Anna Marinosci},
     title = {Homogeneous geodesics in a three-dimensional Lie group},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {43},
     year = {2002},
     pages = {261-270},
     zbl = {1090.53038},
     mrnumber = {1922126},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119318}
}
Marinosci, Rosa Anna. Homogeneous geodesics in a three-dimensional Lie group. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 261-270. http://gdmltest.u-ga.fr/item/119318/

Gordon C.S. Homogeneous Riemannian manifolds whose geodesics are orbits, Topics in Geometry, in Memory of Joseph D'Atri, 1996, pp.155-174. | MR 1390313 | Zbl 0861.53052

Kajzer V.V. Conjugate points of left-invariant metrics on Lie groups, J. Soviet Math. 34 (1990), 32-44. (1990) | MR 1106314 | Zbl 0722.53049

Kaplan A. On the geometry of groups of Heisemberg type, Bull. London Math. Soc. 15 (1983), 35-42. (1983) | MR 0686346

Kobayashi S.; Nomizu K. Foundations of Differential Geometry, I and II, Interscience Publisher, New York, 1963, 1969. | MR 0152974

Kowalski O. Generalized symmetric spaces, Lecture Notes in Math. 805, Springer-Verlag, Berlin, Heidelberg, New York, 1980. | MR 0579184 | Zbl 0543.53041

Kowalski O.; Nikčević S. On geodesic graphs of Riemannian g.o. spaces, Archiv der Math. 73 (1999), 223-234. (1999) | MR 1705019

Kowalski O.; Nikčević S.; Vlášek Z. Homogeneous geodesics in homogeneous Riemannian manifolds. Examples, Reihe Mathematik, TU Berlin, No. 665/2000 (9 pages). | MR 1801906

Kowalski O.; Prüfer F.; Vanhecke L. D'Atri spaces, in Topics in Geometry, Birkhäuser, Boston, 1996, pp.241-284. | MR 1390318 | Zbl 0862.53039

Kowalski O.; Szenthe J. On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata 81 (2000), 209-214. (2000) | MR 1772203 | Zbl 0980.53061

Kowalski O.; Vanhecke L. Riemannian manifolds with homogeneous geodesics, Boll. Un. Mat. Ital. 5 (1991), 189-246. (1991) | MR 1110676 | Zbl 0731.53046

Milnor J. Curvatures of left-invariant metrics on Lie groups, Adv. Math. 21 (1976), 293-329. (1976) | MR 0425012 | Zbl 0341.53030

Tricerri F.; Vanhecke L. Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Note Series 83, Cambridge Univ. Press, Cambridge, 1983. | MR 0712664 | Zbl 0641.53047