We construct new examples of algebraic curvature tensors so that the Jordan normal form of the higher order Jacobi operator is constant on the Grassmannian of subspaces of type $(r,s)$ in a vector space of signature $(p,q)$. We then use these examples to establish some results concerning higher order Osserman and higher order Jordan Osserman algebraic curvature tensors.
@article{119316, author = {Peter Gilkey and Raina Ivanova}, title = {The Jordan normal form of higher order Osserman algebraic curvature tensors}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {231-242}, zbl = {1090.53022}, mrnumber = {1922124}, language = {en}, url = {http://dml.mathdoc.fr/item/119316} }
Gilkey, Peter; Ivanova, Raina. The Jordan normal form of higher order Osserman algebraic curvature tensors. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 231-242. http://gdmltest.u-ga.fr/item/119316/
A note on Osserman Lorentzian manifolds, Bull. London Math. Soc. 29 (1997), 227-230. (1997) | MR 1426003
Pseudo-Riemannian Osserman manifolds, J. Balkan Society of Geometers l2 (1997), 1-12. (1997) | MR 1662081
Nonsymmetric Osserman indefinite Kähler manifolds, Proc. Amer. Math. Soc. 126 (1998), 2763-2769. (1998) | MR 1476121
A curvature characterization of certain locally rank-one symmetric spaces, J. Differential Geom. 28 (1988), 187-202. (1988) | MR 0961513 | Zbl 0654.53053
Negatively curved homogeneous Osserman spaces, Differential Geom. Appl. 11 (1999), 163-178. (1999) | MR 1712119 | Zbl 0970.53031
On a problem of Osserman in Lorentzian geometry, Differential Geom. Appl. 7 (1997), 85-100. (1997) | MR 1441921
Nonsymmetric Osserman pseudo-Riemannian manifolds, Proc. Amer. Math. Soc. 126 (1998),2771-2778. (1998) | MR 1476128
Manifolds whose curvature operator has constant eigenvalues at the basepoint, J. Geom. Anal. 4 (1994), 155-158. (1994) | MR 1277503 | Zbl 0797.53010
Algebraic curvature tensors which are $p$ Osserman, to appear in Differential Geom. Appl. | MR 1836275 | Zbl 1031.53034
Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor, World Scientific, 2002. | MR 1877530 | Zbl 1007.53001
The Jordan normal form of Osserman algebraic curvature tensors, Results Math. 40 (2001), 192-204. (2001) | MR 1860368 | Zbl 0999.53014
Curvature tensors whose Jacobi or Szabó operator is nilpotent on null vectors, Bull. London Math. Soc., to appear. | MR 1924351 | Zbl 1043.53018
Pseudo-Riemannian manifolds whose generalized Jacobi operator has constant characteristic polynomial, J. Geom. 62 (1998), 144-153. (1998) | MR 1631494 | Zbl 0906.53046
Isoparametric geodesic spheres and a conjecture of Osserman regarding the Jacobi operator, Quart. J. Math. Oxford Ser. 46 (1995), 299-320. (1995) | MR 1348819
Curvature in the eighties, Amer. Math. Monthly 97 (1990), 731-756. (1990) | MR 1072814 | Zbl 0722.53001
Curvature operators based on the skew-symmetric curvature operator and their place in Differential Geometry, preprint, 2000.
On Osserman conjecture by characteristical coefficients, Algebras Groups Geom. 12 (1995), 157-163. (1995) | MR 1325979 | Zbl 0827.53042
Four-dimensional pointwise Osserman manifolds, Abh. Math. Sem. Univ. Hamburg 68 (1998), 1-6. (1998) | MR 1658408 | Zbl 0980.53058