Metrics with homogeneous geodesics on flag manifolds
Alekseevsky, Dimitri V. ; Arvanitoyeorgos, Andreas
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002), p. 189-199 / Harvested from Czech Digital Mathematics Library

A geodesic of a homogeneous Riemannian manifold $(M=G/K, g)$ is called homogeneous if it is an orbit of an one-parameter subgroup of $G$. In the case when $M=G/H$ is a naturally reductive space, that is the $G$-invariant metric $g$ is defined by some non degenerate biinvariant symmetric bilinear form $B$, all geodesics of $M$ are homogeneous. We consider the case when $M=G/K$ is a flag manifold, i.e\. an adjoint orbit of a compact semisimple Lie group $G$, and we give a simple necessary condition that $M$ admits a non-naturally reductive invariant metric with homogeneous geodesics. Using this, we enumerate flag manifolds of a classical Lie group $G$ which may admit a non-naturally reductive $G$-invariant metric with homogeneous geodesics.

Publié le : 2002-01-01
Classification:  03E25,  14M15,  53C22,  53C30
@article{119313,
     author = {Dimitri V. Alekseevsky and Andreas Arvanitoyeorgos},
     title = {Metrics with homogeneous geodesics on flag manifolds},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {43},
     year = {2002},
     pages = {189-199},
     zbl = {1090.53044},
     mrnumber = {1922121},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119313}
}
Alekseevsky, Dimitri V.; Arvanitoyeorgos, Andreas. Metrics with homogeneous geodesics on flag manifolds. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 189-199. http://gdmltest.u-ga.fr/item/119313/

Alekseevsky D.V. Flag manifolds, in: Sbornik Radova, vol.6, Beograd, 1997, 3-35. | MR 1491979 | Zbl 1148.53038

Alekseevsky D.V.; Perelomov A.M. Invariant Kähler-Einstein metrics on compact homogeneous spaces, Functional Anal. Appl. 20 (1986), 171-182. (1986) | MR 0868557

Dušek Z. Structure of geodesics in a $13$-dimensional group of Heisenberg type, Proc. Coll. Diff. Geom. in Debrecen (2001), pp. 95-103. | MR 1859291

Dušek Z. Explicit geodesic graphs on some $H$-type groups, preprint. | MR 1972426

Gordon C.S. Homogeneous manifolds whose geodesics are orbits, in: Topics in Geometry, in Memory of Joseph D'Atri, Birkhäuser, Basel, 1996, pp.155-174. | MR 1390313

Kaplan A. On the geometry of groups of Heisenberg type Bull. London Math. Soc., 15 (1983), 35-42. (1983) | MR 0686346

Kostant B. Holonomy and Lie algebra of motions in Riemannian manifolds, Trans. Amer. Math. Soc. 80 (1955), 520-542. (1955) | MR 0084825

Kowalski O.; Ž. Nikčević S. On geodesic graphs of Riemannian g.o. spaces, Arch. Math. 73 (1999), 223-234. (1999) | MR 1705019

Kowalski O.; Ž. Nikčević S.; Vlášek Z. Homogeneous geodesics in homogeneous Riemannian manifolds - examples, in: Geometry and Topology of Submanifolds, X (Beijing/Berlin, 1999), pp.104-112, World Sci. Publishing, River Edge, NJ, 2000. | MR 1801906

Kowalski O.; Vanhecke L. Riemannian manifolds with homogeneous geodesics, Boll. Un. Mat. Ital. B (7) 5 (1991), 189-246. (1991) | MR 1110676 | Zbl 0731.53046

Kowalski O.; Szenthe J. On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata 81 (2000), 209-214; Erratum: 84 (2001), 331-332. (2000) | MR 1772203 | Zbl 0980.53061

Vinberg E.B. Invariant linear connections in a homogeneous manifold, Trudy MMO 9 (1960), 191-210. (1960) | MR 0176418