In this paper, a simple proof is given for the following theorem due to Blair [7], Blair-Hager [8] and Hager-Johnson [12]: A Tychonoff space $X$ is $z$-embedded in every larger Tychonoff space if and only if $X$ is almost compact or Lindelöf. We also give a simple proof of a recent theorem of Bella-Yaschenko [6] on absolute embeddings.
@article{119310, author = {Kaori Yamazaki}, title = {A proof for the Blair-Hager-Johnson theorem on absolute $z$-embedding}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {175-179}, zbl = {1090.54009}, mrnumber = {1903317}, language = {en}, url = {http://dml.mathdoc.fr/item/119310} }
Yamazaki, Kaori. A proof for the Blair-Hager-Johnson theorem on absolute $z$-embedding. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 175-179. http://gdmltest.u-ga.fr/item/119310/
Normal Topological Spaces, Cambridge University Press, Cambridge, 1974. | MR 0390985
Relative topological properties and relative topological spaces, Topology Appl. 70 (1996), 87-99. (1996) | MR 1397067 | Zbl 0848.54016
A characterization of compactness by relative separation property, Questions Answers Gen. Topology 14 (1996), 49-52. (1996) | MR 1384052
Some embeddings related to $C^*$-embeddings, J. Austral. Math. Soc. (Series A) 44 (1988), 88-104. (1988) | MR 0914406 | Zbl 0653.54015
On well-embedding, General Topology and Applications (Middletown, CT, 1988), pp.1-5; Lecture Notes in Pure and Appl. Math., 123, Dekker, New York, 1990. | MR 1057621 | Zbl 0721.54009
Lindelöf property and absolute embeddings, Proc. Amer. Math. Soc. 127 (1999), 907-913. (1999) | MR 1469399 | Zbl 0907.54003
On $\upsilon$-embedded sets in topological spaces, TOPO 72 - General Topology and its Applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), pp.46-79; Lecture Notes in Math., Vol. 378, Springer, Berlin, 1974. | MR 0358677
Extensions of zero-sets and of real-valued functions, Math. Z. 136 (1974), 41-52. (1974) | MR 0385793 | Zbl 0264.54011
On uniform spaces with a unique structure, Amer. J. Math. 71 (1949), 19-23. (1949) | MR 0029153 | Zbl 0032.12202
General Topology, Heldermann Verlag, Berlin, 1989. | MR 1039321 | Zbl 0684.54001
Rings of Continuous Functions, Van Nostrand, Princeton, 1960. | MR 0116199 | Zbl 0327.46040
A note on certain subalgebras of $C(X)$, Canad. J. Math. 20 (1968), 389-393. (1968) | MR 0222647
On the structure of a class of archimedian lattice-ordered algebras, Fund. Math. 50 (1961), 73-94. (1961) | MR 0133698
A note on extensions of continuous functions, An. Acad. Brasil. Ci. 21 (1949), 175-179. (1949) | MR 0031711
$C$-embedded subsets of products, Proc. Amer. Math. Soc. 31 (1972), 613-614. (1972) | MR 0284978 | Zbl 0231.54011
Mappings of systems of open sets (in Russian), Mat. Sb. 31 (1952), 152-166. (1952) | MR 0050263
Note on $z$-, $C^*$-, and $C$-embedding, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A. 13 (1975), 129-132. (1975) | MR 0391005 | Zbl 0333.54008
Characterizations of paracompactness and Lindelöfness by separation property, preprint. | MR 1948123