$\alpha$-normality and $\beta$-normality are properties generalizing normality of topological spaces. They consist in separating dense subsets of closed disjoint sets. We construct an example of a Tychonoff $\beta$-normal non-normal space and an example of a Hausdorff $\alpha$-normal non-regular space.
@article{119308, author = {Eva Murtinov\'a}, title = {A $\beta$-normal Tychonoff space which is not normal}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {159-164}, zbl = {1090.54016}, mrnumber = {1903315}, language = {en}, url = {http://dml.mathdoc.fr/item/119308} }
Murtinová, Eva. A $\beta$-normal Tychonoff space which is not normal. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 159-164. http://gdmltest.u-ga.fr/item/119308/
On $\alpha$-normal and $\beta$-normal spaces, Comment. Math. Univ. Carolinae 42.3 (2001), 507-519. (2001) | MR 1860239 | Zbl 1053.54030
Disjoint refinement, Handbook of Boolean Algebras J.D. Monk, R. Bonnet Elsevier Science Publishers B.V. (1989), 333-386. (1989) | MR 0991597
Hereditarily separable, non-completely regular spaces, Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, VA, 1973) Lecture Notes in Math., vol. 375, Springer, Berlin (1974), 149-152. (1974) | MR 0413044 | Zbl 0286.54008
A consistent example of a $\beta$-normal not normal space, Proceedings of the 2000 Topology and Dynamics Conference (San Antonio, TX), Topology Proc. 25 (2000), 1-4. (2000) | MR 1875595