An example of a $\Cal C^{1,1}$ function, which is not a d.c. function
Zelený, Miroslav
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002), p. 149-154 / Harvested from Czech Digital Mathematics Library

Let $X = \ell_p$, $p \in (2,+\infty)$. We construct a function $f:X \to \Bbb R$ which has Lipschitz Fréchet derivative on $X$ but is not a d.c. function.

Publié le : 2002-01-01
Classification:  26B25,  46B20,  46G05
@article{119306,
     author = {Miroslav Zelen\'y},
     title = {An example of a $\Cal C^{1,1}$ function, which is not a d.c. function},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {43},
     year = {2002},
     pages = {149-154},
     zbl = {1090.46012},
     mrnumber = {1903313},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119306}
}
Zelený, Miroslav. An example of a $\Cal C^{1,1}$ function, which is not a d.c. function. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 149-154. http://gdmltest.u-ga.fr/item/119306/

Deville R.; Godefroy G.; Zizler V. Smoothness and Renormings in Banach Spaces, Longman (1993). (1993) | MR 1211634 | Zbl 0782.46019

Duda J.; Veselý L.; Zajíček L. On d.c. functions and mappings, submitted to Atti Sem. Mat. Fis. Univ. Modena.

Veselý L.; Zajíček L. Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy mat.) 289 (1989), 52 pp. (1989) | MR 1016045