Let $X = \ell_p$, $p \in (2,+\infty)$. We construct a function $f:X \to \Bbb R$ which has Lipschitz Fréchet derivative on $X$ but is not a d.c. function.
@article{119306, author = {Miroslav Zelen\'y}, title = {An example of a $\Cal C^{1,1}$ function, which is not a d.c. function}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {149-154}, zbl = {1090.46012}, mrnumber = {1903313}, language = {en}, url = {http://dml.mathdoc.fr/item/119306} }
Zelený, Miroslav. An example of a $\Cal C^{1,1}$ function, which is not a d.c. function. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 149-154. http://gdmltest.u-ga.fr/item/119306/
Smoothness and Renormings in Banach Spaces, Longman (1993). (1993) | MR 1211634 | Zbl 0782.46019
On d.c. functions and mappings, submitted to Atti Sem. Mat. Fis. Univ. Modena.
Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy mat.) 289 (1989), 52 pp. (1989) | MR 1016045