Sequentially compact sets in a class of generalized Orlicz spaces
Wang, Jin Cai
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002), p. 119-132 / Harvested from Czech Digital Mathematics Library

In this paper, we will characterize sequentially compact sets in a class of generalized Orlicz spaces.

Publié le : 2002-01-01
Classification:  46B20,  46B50,  46E30
@article{119304,
     author = {Jin Cai Wang},
     title = {Sequentially compact sets in a class of generalized Orlicz spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {43},
     year = {2002},
     pages = {119-132},
     zbl = {1090.46011},
     mrnumber = {1903311},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119304}
}
Wang, Jin Cai. Sequentially compact sets in a class of generalized Orlicz spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 119-132. http://gdmltest.u-ga.fr/item/119304/

Rao M.M.; Ren Z.D. Theory of Orlicz Spaces, Marcel Dekker, New York, 1991. | MR 1113700 | Zbl 0724.46032

Maligranda L. Orlicz Spaces and Interpolation, Seminars in Mathematics 5, Univ. Estadual de Campinas, Capinas SP Brasil, 1989. | MR 2264389 | Zbl 0874.46022

Rao M.M.; Ren Z.D. Applications of Orlicz Spaces, Marcel Dekker, New York, 2001, to appear. | MR 1890178 | Zbl 0997.46027

Riesz F. Untersuchungen über Systeme integrierbarer Funktionen, Math. Ann. 69 (1910), 449-497. (1910) | MR 1511596

Kantorovich L.V.; Akilov G.P. Functional Analysis, Pergamon Press, New York, 1982. | MR 0664597 | Zbl 0555.46001

Krasnosel'Skii M.A.; Rutickii Ya.B. Convex Functions and Orlicz Space, Noordhoff Ltd. Groningen, 1961. | MR 0126722

Takahashi T. On the compactness of the function-set by the convergence in mean of general type, Studia Math. 5 (1935), 141-150. (1935) | Zbl 0013.06501

Gribanov Yu. Nonlinear operators in Orlicz spaces (in Russian), U ̆c. zap. kazansk. Unta 115 (7) (1955). (1955)

Tsuji M. On the compactness of space $L^p(p>0)$ and its application to integral equation, Mathematical Institute, Tokyo University, 1951. | Zbl 0044.10701