In this paper, we will characterize sequentially compact sets in a class of generalized Orlicz spaces.
@article{119304, author = {Jin Cai Wang}, title = {Sequentially compact sets in a class of generalized Orlicz spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {119-132}, zbl = {1090.46011}, mrnumber = {1903311}, language = {en}, url = {http://dml.mathdoc.fr/item/119304} }
Wang, Jin Cai. Sequentially compact sets in a class of generalized Orlicz spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 119-132. http://gdmltest.u-ga.fr/item/119304/
Theory of Orlicz Spaces, Marcel Dekker, New York, 1991. | MR 1113700 | Zbl 0724.46032
Orlicz Spaces and Interpolation, Seminars in Mathematics 5, Univ. Estadual de Campinas, Capinas SP Brasil, 1989. | MR 2264389 | Zbl 0874.46022
Applications of Orlicz Spaces, Marcel Dekker, New York, 2001, to appear. | MR 1890178 | Zbl 0997.46027
Untersuchungen über Systeme integrierbarer Funktionen, Math. Ann. 69 (1910), 449-497. (1910) | MR 1511596
Functional Analysis, Pergamon Press, New York, 1982. | MR 0664597 | Zbl 0555.46001
Convex Functions and Orlicz Space, Noordhoff Ltd. Groningen, 1961. | MR 0126722
On the compactness of the function-set by the convergence in mean of general type, Studia Math. 5 (1935), 141-150. (1935) | Zbl 0013.06501
Nonlinear operators in Orlicz spaces (in Russian), U ̆c. zap. kazansk. Unta 115 (7) (1955). (1955)
On the compactness of space $L^p(p>0)$ and its application to integral equation, Mathematical Institute, Tokyo University, 1951. | Zbl 0044.10701