In this note we investigate the relationship between the convergence of the sequence $\{S_{n}\}$ of sums of independent random elements of the form $S_{n}=\sum_{i=1}^{n}\varepsilon_{i}x_{i}$ (where $\varepsilon_{i}$ takes the values $\pm\,1$ with the same probability and $x_{i}$ belongs to a real Banach space $X$ for each $i\in \Bbb N$) and the existence of certain weakly unconditionally Cauchy subseries of $\sum_{n=1}^{\infty}x_{n}$.
@article{119301, author = {Juan Carlos Ferrando}, title = {On the convergence of certain sums of independent random elements}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {77-81}, zbl = {1090.46009}, mrnumber = {1903308}, language = {en}, url = {http://dml.mathdoc.fr/item/119301} }
Ferrando, Juan Carlos. On the convergence of certain sums of independent random elements. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 77-81. http://gdmltest.u-ga.fr/item/119301/
Banach Spaces of Vector-Valued Functions, LNM 1676, Springer, 1997. | MR 1489231 | Zbl 0902.46017
Complemented copies of $c_{0}$ in the space of Pettis integrable functions, Quaestiones Math. 16 (1993), 61-66. (1993) | MR 1217475
Sequences and series in Banach spaces, GTM 92, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984. | MR 0737004
Vector measures, Math Surveys 15, Amer. Math. Soc., Providence, 1977. | MR 0453964 | Zbl 0521.46035
On a theorem of Kwapień, Quaestiones Math. 24 (2001), 51-54. (2001) | MR 1824912 | Zbl 1019.46010
Embedding $c_{0}$ in the space of Pettis integrable functions, Quaestiones Math. 21 (1998), 261-267. (1998) | MR 1701785 | Zbl 0963.46025
Measure Theory, GTM 18, Springer, New York-Berlin-Heidelberg-Barcelona, 1950. | MR 0033869 | Zbl 0283.28001
On Banach spaces containing $c_{0}$, Studia Math. 52 (1974), 187-188. (1974) | MR 0356156
Probability Distributions on Banach Spaces, D. Reidel Publishing Company, Dordrecht, 1987. | MR 1435288