We analyze the equation coming from the Eulerian-Lagrangian description of fluids. We discuss a couple of ways to extend this notion to viscous fluids. The main focus of this paper is to discuss the first way, due to Constantin. We show that this description can only work for short times, after which the ``back to coordinates map'' may have no smooth inverse. Then we briefly discuss a second way that uses Brownian motion. We use this to provide a plausibility argument for the global regularity for the Navier-Stokes equations.
@article{119300, author = {Stephen Montgomery-Smith and Milan Pokorn\'y}, title = {A counterexample to the smoothness of the solution to an equation arising in fluid mechanics}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {61-75}, zbl = {1090.35146}, mrnumber = {1903307}, language = {en}, url = {http://dml.mathdoc.fr/item/119300} }
Montgomery-Smith, Stephen; Pokorný, Milan. A counterexample to the smoothness of the solution to an equation arising in fluid mechanics. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 61-75. http://gdmltest.u-ga.fr/item/119300/
Vorticity and Turbulence, Applied Mathematical Sciences 103, Springer-Verlag, New York, 1994. | MR 1281384 | Zbl 0795.76002
An Eulerian-Lagrangian approach to the Navier-Stokes equations, preprint, 2000. | MR 1815721 | Zbl 0988.76020
Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987), 667-212. (1987) | MR 0877643 | Zbl 0626.35059
On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid (in Russian), Izv. Akad. Nauk SSSR. Ser. Mat. 21 (1957), 655-680. (1957) | MR 0100448
Linear and quasilinear equations of parabolic type (in Russian), Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1967. | MR 0241822
Sur le mouvement d'un liquide visqueux emplisant l'espace, Acta Math. 63 (1934), 193-248. (1934) | MR 1555394
Mathematical Topics in Fluid Mechanics, Vol. 1, Clarendon Press, Oxford, 1996. | MR 1422251 | Zbl 0908.76004
Algebraic Topology, Cambridge University Press, Cambridge-New York, 1980. | MR 0694843 | Zbl 0435.55001
Rôle des oscillation dans quelques problèmes d'analyse non-linéaire, Ph.D. Thesis, ENS Cachan, 1998.