Extensions of order bounded linear operators on an Archimedean vector lattice to its relatively uniform completion are considered and are applied to show that the multiplication in an Archimedean lattice ordered algebra can be extended, in a unique way, to its relatively uniform completion. This is applied to show, among other things, that any order bounded algebra homomorphism on a complex Archimedean almost $f$-algebra is a lattice homomorphism.
@article{119297, author = {Abdelmajid Triki}, title = {On algebra homomorphisms in complex almost $f$-algebras}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {23-31}, zbl = {1070.06008}, mrnumber = {1903304}, language = {en}, url = {http://dml.mathdoc.fr/item/119297} }
Triki, Abdelmajid. On algebra homomorphisms in complex almost $f$-algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 23-31. http://gdmltest.u-ga.fr/item/119297/
Unital embedding and complexification of $f$-algebras, Math. Z. 183 131-144 (1983). (1983) | MR 0701362
Averaging operators and positive contractive projections, J. Math. Anal. Appl. 113 163-184 (1986). (1986) | MR 0826666 | Zbl 0604.47024
Subalgebras and Riesz subspaces of an $f$-algebra, Proc. London Math. Soc. (3) 48 161-174 (1984). (1984) | MR 0721777 | Zbl 0534.46010
Riesz Spaces I, North Holland, Amsterdam, 1971.
Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kodai Math. Semin. Rep. 11 182-188 (1959). (1959) | MR 0121645 | Zbl 0166.40002
Intermediate Riesz spaces, Pacific J. Math. 56 (1975), 225-263. (1975) | MR 0380355 | Zbl 0315.06009
Banach Lattices and Positive Operators, Springer, Berlin, 1974. | MR 0423039 | Zbl 0296.47023
FF-Banachverband algebren, Math. Z. 177 193-205 (1981). (1981) | MR 0612873
Riesz Spaces II, North-Holland, Amsterdam, 1983. | MR 0704021 | Zbl 0519.46001