On algebra homomorphisms in complex almost $f$-algebras
Triki, Abdelmajid
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002), p. 23-31 / Harvested from Czech Digital Mathematics Library

Extensions of order bounded linear operators on an Archimedean vector lattice to its relatively uniform completion are considered and are applied to show that the multiplication in an Archimedean lattice ordered algebra can be extended, in a unique way, to its relatively uniform completion. This is applied to show, among other things, that any order bounded algebra homomorphism on a complex Archimedean almost $f$-algebra is a lattice homomorphism.

Publié le : 2002-01-01
Classification:  06F20,  06F25,  46A40
@article{119297,
     author = {Abdelmajid Triki},
     title = {On algebra homomorphisms in complex almost $f$-algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {43},
     year = {2002},
     pages = {23-31},
     zbl = {1070.06008},
     mrnumber = {1903304},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119297}
}
Triki, Abdelmajid. On algebra homomorphisms in complex almost $f$-algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 23-31. http://gdmltest.u-ga.fr/item/119297/

Beukers F.; Huijsmans C.B.; Pagter B. De Unital embedding and complexification of $f$-algebras, Math. Z. 183 131-144 (1983). (1983) | MR 0701362

Huijsmans C.B.; Pagter; B. De Averaging operators and positive contractive projections, J. Math. Anal. Appl. 113 163-184 (1986). (1986) | MR 0826666 | Zbl 0604.47024

Huijsmans C.B.; Pagter B. De Subalgebras and Riesz subspaces of an $f$-algebra, Proc. London Math. Soc. (3) 48 161-174 (1984). (1984) | MR 0721777 | Zbl 0534.46010

Luxemburg W.A.J.; Zaanen A.C. Riesz Spaces I, North Holland, Amsterdam, 1971.

Nagasawa M. Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kodai Math. Semin. Rep. 11 182-188 (1959). (1959) | MR 0121645 | Zbl 0166.40002

Quinn J. Intermediate Riesz spaces, Pacific J. Math. 56 (1975), 225-263. (1975) | MR 0380355 | Zbl 0315.06009

Schaefer H.H. Banach Lattices and Positive Operators, Springer, Berlin, 1974. | MR 0423039 | Zbl 0296.47023

Scheffold E. FF-Banachverband algebren, Math. Z. 177 193-205 (1981). (1981) | MR 0612873

Zaanen A.C Riesz Spaces II, North-Holland, Amsterdam, 1983. | MR 0704021 | Zbl 0519.46001