It is shown that operators occurring in the classical Penrose transform are differential. These operators are identified depending on line bundles over the twistor space.
@article{119284, author = {Zbyn\v ek \v S\'\i r}, title = {Properties of operators occurring in the Penrose transform}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {681-690}, zbl = {1090.53504}, mrnumber = {1883377}, language = {en}, url = {http://dml.mathdoc.fr/item/119284} }
Šír, Zbyněk. Properties of operators occurring in the Penrose transform. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 681-690. http://gdmltest.u-ga.fr/item/119284/
The Penrose Transform and its Interaction with Representation Theory, Oxford University Press (1989). (1989) | MR 1038279
On the relative de Rham sequence, Proc. Amer. Math. Soc. 87 (1983), 363-366. (1983) | MR 0681850 | Zbl 0511.58001
A duality for homogeneous bundles on twistor space, J. London Math. Soc. 31 (1985), 349-356. (1985) | MR 0809956 | Zbl 0534.14008
Principles of Algebraic Geometry, A Wiley-Intescience Publication (1978). (1978) | MR 0507725 | Zbl 0408.14001
Analytic Functions of Several Complex Variables, Prentice-Hall (1965). (1965) | MR 0180696 | Zbl 0141.08601
Splitting criteria for $\mathfrak g$-modules induced from parabolic and the Bernstain-Gelfand-Gelfand resolution of a finite dimensional, irreducible $\mathfrak g$-module, Trans. Amer. Math. Soc. (1980), 262 335-361. (1980) | MR 0586721
Natural operators on conformal manifolds, Dissertation (1994), Masaryk University Brno. (1994) | MR 1255551
Twistor Geometry and Field Theory, Cambridge University Press (1983). (1983) | MR 1054377