Let $r,s,q, m,n\in \Bbb N$ be such that $s\geq r\leq q$. Let $Y$ be a fibered manifold with $m$-dimensional basis and $n$-dimensional fibers. All natural affinors on $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$ are classified. It is deduced that there is no natural generalized connection on \linebreak $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$. Similar problems with $(J^{r,s}(Y,\Bbb R)_0)^*$ instead of $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$ are solved.
@article{119282, author = {W\l odzimierz M. Mikulski}, title = {Natural affinors on $(J^{r,s,q}(.,\Bbb R^{1,1})\_0)^*$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {655-663}, zbl = {1090.58501}, mrnumber = {1883375}, language = {en}, url = {http://dml.mathdoc.fr/item/119282} }
Mikulski, Włodzimierz M. Natural affinors on $(J^{r,s,q}(.,\Bbb R^{1,1})_0)^*$. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 655-663. http://gdmltest.u-ga.fr/item/119282/
Natural affinors on time-dependent Weil bundles, Arch. Math. Brno 27 (1991), 205-209. (1991) | MR 1189217
Natural affinors on the extended $r$-th order tangent bundles, Suppl. Rendiconti Circolo Mat. Palermo 30 (1993), 95-100. (1993) | MR 1246623
Natural operations in differential geometry, Springer-Verlag, Berlin, 1993. | MR 1202431
Contact elements on fibered manifolds, to appear in Czech Math. J. | MR 2018847
Torsions of connections on some natural bundles, Differential Geom. Appl. 2 (1992), 1-16. (1992) | MR 1244453
Natural transformations of higher order tangent bundles and jet spaces, Čas. pěst. mat. 114 (1989), 181-185. (1989) | MR 1063764
Natural affinors on higher order cotangent bundles, Arch. Math. Brno 28 (1992), 175-180. (1992) | MR 1222284
Natural affinors on $r$-jet prolongation of the tangent bundles, Arch. Math. Brno 34(2) (1998), 321-328. (1998) | MR 1645340
Natural affinors on $(J^rT^*)^*$, Arch. Math. Brno 36(4) (2000), 261-267. (2000) | MR 1811170
The natural affinors on $øtimes^kT^{(r)}$, Note di Matematica 19(2) (1999), 269-274. (1999) | MR 1816880
The natural affinors on generalized higher order tangent bundles, to appear. | MR 1884952 | Zbl 1048.58004
On the order of natural operators and liftings, Ann. Polon. Math. 49 (1988), 169-178. (1988) | MR 0983220