The lattice copies of $\ell_1$ in Banach lattices
Wójtowicz, Marek
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001), p. 649-653 / Harvested from Czech Digital Mathematics Library

It is known that a Banach lattice with order continuous norm contains a copy of $\ell_1$ if and only if it contains a lattice copy of $\ell_1$. The purpose of this note is to present a more direct proof of this useful fact, which extends a similar theorem due to R.C. James for Banach spaces with unconditional bases, and complements the $c_0$- and $\ell_{\infty}$-cases considered by Lozanovskii, Mekler and Meyer-Nieberg.

Publié le : 2001-01-01
Classification:  46B42,  46B45
@article{119281,
     author = {Marek W\'ojtowicz},
     title = {The lattice copies of $\ell\_1$ in Banach lattices},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {42},
     year = {2001},
     pages = {649-653},
     zbl = {1090.46503},
     mrnumber = {1883374},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119281}
}
Wójtowicz, Marek. The lattice copies of $\ell_1$ in Banach lattices. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 649-653. http://gdmltest.u-ga.fr/item/119281/

Abramovich Y.A.; Lozanovskii G.Ya. On some numerical characterizations of KN-lineals (Russian), Mat. Zametki 14 (1973), 723-732; Transl.: Math. Notes 14 (1973), 973-978. (1973) | MR 0338727

Abramovich Y.A.; Wickstead A.W. Remarkable classes of unital AM-spaces, J. Math. Anal. Appl. 180 (1993), 398-411. (1993) | MR 1251867 | Zbl 0792.46004

Aliprantis C.D.; Burkinshaw O. Positive Operators, Academic Press, New York, 1985. | MR 0809372 | Zbl 1098.47001

Diaz J.C. On a three-space problem: noncontainment of $\ell_p$, $1\le p<\infty$, or $c_0$-subspaces, Publ. Mat. (Barcelona) 37 (1993), 127-132. (1993) | MR 1240928

Diestel J. A survey of results related to the Dunford-Pettis property, Contemporary Math. 2 (1980), 15-60. (1980) | MR 0621850 | Zbl 0571.46013

Drewnowski L.; Labuda I. Copies of $c_0$ and $\ell_{\infty}$ in topological Riesz spaces, Trans. Amer. Math. Soc. 350 (1998), 3555-3570. (1998) | MR 1466947 | Zbl 0903.46010

Kühn B. Banachverbände mit ordungsstetiger Dualnorm, Math. Z. 167 (1979), 271-277. (1979) | MR 0539109

Lindenstrauss J. Weakly compact sets - their topological properties and the Banach spaces they generate, Proc. Symp. Infinite Dim. Topology 1967, Annals Math. Studies, Princeton Univ. Press, 1972. | MR 0417761 | Zbl 0232.46019

Lindenstrauss J.; Tzafriri L. Classical Banach Spaces I, Sequence Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR 0500056 | Zbl 0362.46013

Lindenstrauss J.; Tzafriri L. Classical Banach Spaces II, Function Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1979. | MR 0540367 | Zbl 0403.46022

Lozanovskii G.Ya. On one result of Shimogaki (in Russian), Theses of Second Conference of the Pedagogical Institutes of Nord-West Region Devoted to Mathematics and Methods of its Teaching, Leningrad, 1970, 43.

Meyer-Nieberg P. Banach Lattices, Springer-Verlag, Berlin-Heidelberg-New York, 1991. | MR 1128093 | Zbl 0743.46015

De Pagter B.; Wnuk W. Some remarks on Banach lattices with non-atomic duals, Indag. Math. (N.S.) 1 (1990), 391-395. (1990) | MR 1075887 | Zbl 0731.46008

Polyrakis I. Lattice-subspaces of $C[0,1]$ and positive bases, J. Math. Anal. Appl. 184 (1994), 1-18. (1994) | MR 1275938 | Zbl 0802.46035

Wnuk W. Locally solid Riesz spaces not containing $c_0$, Bull. Polish Acad. Sci. Math. 36 (1988), 51-55. (1988) | MR 0998207

Wnuk W. Banach Lattices with Order Continuous Norm, Polish Scientific Publishers, Warszawa, 1999.

Wójtowicz M. The Sobczyk property and copies of $\ell_{\infty}$ in locally convex-solid Riesz spaces, Arch. Math. 75 (2000), 376-379. (2000) | MR 1785446