We show that there is a universal control on the Szlenk index of a Lipschitz-quotient of a Banach space with countable Szlenk index. It is in particular the case when two Banach spaces are Lipschitz-homeomorphic. This provides information on the Cantor index of scattered compact sets $K$ and $L$ such that $C(L)$ is a Lipschitz-quotient of $C(K)$ (that is the case in particular when these two spaces are Lipschitz-homeomorphic). The proof requires tools of descriptive set theory.
@article{119280, author = {Yves Dutrieux}, title = {Lipschitz-quotients and the Kunen-Martin Theorem}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {641-648}, zbl = {1069.03035}, mrnumber = {1883373}, language = {en}, url = {http://dml.mathdoc.fr/item/119280} }
Dutrieux, Yves. Lipschitz-quotients and the Kunen-Martin Theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 641-648. http://gdmltest.u-ga.fr/item/119280/
Szlenk indices and uniform homeomorphisms, Trans. Amer. Math. Soc. (2000), to appear. | MR 1837213 | Zbl 0981.46007
Affine approximation of Lipschitz functions and nonlinear quotients, Geom. Funct. Anal. (1999), 6 1092-1127. (1999) | MR 1736929 | Zbl 0954.46014
Théorie descriptive des ensembles en géométrie des espaces de Banach, Thèse de doctorat de l'Université Paris VI, (in French), 1994.
On the Szlenk index and the weak*-dentability index, Quart. J. Math. Oxford (2) (1996), 47 59-71. (1996) | MR 1380950 | Zbl 0973.46014
Descriptive set theory and the structure of sets of uniqueness, London Math. Soc. Lecture Note Series (1987), 128. (1987) | Zbl 0642.42014
Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math. (1982), 73 225-251. (1982) | MR 0675426 | Zbl 0506.46008
New classes of $\Cal L^p$-spaces, Lecture Notes in Mathematics 889, Springer Verlag, 1981. | MR 0639014
Topology and Borel structure; descriptive topology and set theory with applications to functional analysis and measure theory, North-Holland Math. Stud. (1974), 10. (1974) | MR 0348724 | Zbl 0273.28001
Codages des espaces de Banach séparables; familles analytiques et coanalytiques d'espaces de Banach, C.R. Acad. Sci. Paris, Série I, 316 (1993), 1005-1010. (1993) | MR 1222962
Geometric nonlinear functional analysis vol. I, AMS Colloquium Publications (2000), 48. (2000)
Subspaces of $c_0(\Bbb N)$ and Lipschitz isomorphisms, Geom. Funct. Anal. (2000), to appear.
Existence of separable uniformly homeomorphic non isomorphic Banach spaces, Israel J. Math. (1984), 48 139-147. (1984) | MR 0770696
Spaces of continuous functions (IV), Studia Math. (1960), 19 53-62. (1960) | MR 0113132 | Zbl 0094.30303