We establish a fixed point theorem for a continuous function $f:X\to E$, where $E$ is a Banach space and $X\subseteq E$. Our result, which involves multivalued contractions, contains the classical Schauder fixed point theorem as a special case. An application is presented.
@article{119279, author = {Paolo Cubiotti and Beatrice Di Bella}, title = {A generalization of the Schauder fixed point theorem via multivalued contractions}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {637-640}, zbl = {1068.47070}, mrnumber = {1883372}, language = {en}, url = {http://dml.mathdoc.fr/item/119279} }
Cubiotti, Paolo; Di Bella, Beatrice. A generalization of the Schauder fixed point theorem via multivalued contractions. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 637-640. http://gdmltest.u-ga.fr/item/119279/
Set-Valued Analysis, Birkhäuser, Boston, 1990. | MR 1048347 | Zbl 1168.49014
Fixed Point Theory, Vol. I, PWN - Polish Scientific Publishers, Warsaw, 1982. | MR 0660439 | Zbl 1025.47002
The distance to the intersection of two convex sets expressed by the distances to each of them, Math. Nachr. 157 (1992), 81-98. (1992) | MR 1233049 | Zbl 0773.52002
Theory of Correspondences, John Wiley and Sons, New York, 1984. | MR 0752692 | Zbl 0556.28012
Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes, Atti Acc. Lincei Rend. Fis. 81 (8) (1987), 283-286. (1987) | MR 0999821 | Zbl 0666.47030