Characterizations of almost transitive superreflexive Banach spaces
Guerrero, Julio Becerra ; Palacios, Angel Rodriguez
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001), p. 629-636 / Harvested from Czech Digital Mathematics Library

Almost transitive superreflexive Banach spaces have been considered in [7] (see also [4] and [6]), where it is shown that such spaces are uniformly convex and uniformly smooth. We prove that convex transitive Banach spaces are either almost transitive and superreflexive (hence uniformly smooth) or extremely rough. The extreme roughness of a Banach space $X$ means that, for every element $u$ in the unit sphere of $X$, we have $$ \limsup _{\Vert h\Vert \rightarrow 0} \frac{\Vert u+h\Vert +\Vert u-h\Vert -2}{\Vert h\Vert}=2. $$ We note that, in general, the property of convex transitivity for a Banach space is weaker than that of almost transitivity.

Publié le : 2001-01-01
Classification:  46B04,  46B10,  46B22
@article{119278,
     author = {Julio Becerra Guerrero and Angel Rodriguez Palacios},
     title = {Characterizations of almost transitive superreflexive Banach spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {42},
     year = {2001},
     pages = {629-636},
     zbl = {1150.46003},
     mrnumber = {1883371},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119278}
}
Guerrero, Julio Becerra; Palacios, Angel Rodriguez. Characterizations of almost transitive superreflexive Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 629-636. http://gdmltest.u-ga.fr/item/119278/

Aparicio A.; Oca Na F.; Paya R.; Rodriguez A. A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges, Glasgow Math. J. 28 (1986), 121-137. (1986) | MR 0848419

Becerra J.; Rodriguez A. The geometry of convex transitive Banach spaces, Bull. London Math. Soc. 31 (1999), 323-331. (1999) | MR 1673411 | Zbl 0921.46006

Bourgin R.D. Geometric aspects of convex sets with the Radon-Nikodym property, Lecture Notes in Mathematics 993, Springer-Verlag, Berlin, 1983. | MR 0704815 | Zbl 0512.46017

Cabello F. Maximal symmetric norms on Banach spaces, Proc. Roy. Irish Acad. 98A (1998), 121-130. (1998) | MR 1759425 | Zbl 0941.46008

Day M.M. Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 21, Springer-Verlag, Berlin, 1973. | MR 0344849 | Zbl 0583.00016

Deville R.; Godefroy G.; Zizler V. Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Math. 64, New York. 1993. | MR 1211634 | Zbl 0782.46019

Finet C. Uniform convexity properties of norms on superreflexive Banach spaces, Israel J. Math. 53 (1986), 81-92. (1986) | MR 0861899

Franchetti C.; Paya R. Banach spaces with strongly subdifferentiable norm, Bolletino U.M.I. 7-B (1993), 45-70. (1993) | MR 1216708 | Zbl 0779.46021

Giles J.R.; Gregory D.A.; Sims B. Characterisation of normed linear spaces with Mazur's intersection property, Bull. Austral. Math. Soc. 18 (1978), 105-123. (1978) | MR 0493266 | Zbl 0373.46028

Kalton N.J.; Wood G.V. Orthonormal systems in Banach spaces and their applications, Math. Proc. Cambridge Philos. Soc. 79 (1976), 493-510. (1976) | MR 0402471 | Zbl 0327.46022

Skorik A.; Zaidenberg M. On isometric reflexions in Banach spaces, Math. Physics, Analysis, Geometry 4 (1997), 212-247. (1997) | MR 1484353