Almost transitive superreflexive Banach spaces have been considered in [7] (see also [4] and [6]), where it is shown that such spaces are uniformly convex and uniformly smooth. We prove that convex transitive Banach spaces are either almost transitive and superreflexive (hence uniformly smooth) or extremely rough. The extreme roughness of a Banach space $X$ means that, for every element $u$ in the unit sphere of $X$, we have $$ \limsup _{\Vert h\Vert \rightarrow 0} \frac{\Vert u+h\Vert +\Vert u-h\Vert -2}{\Vert h\Vert}=2. $$ We note that, in general, the property of convex transitivity for a Banach space is weaker than that of almost transitivity.
@article{119278, author = {Julio Becerra Guerrero and Angel Rodriguez Palacios}, title = {Characterizations of almost transitive superreflexive Banach spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {629-636}, zbl = {1150.46003}, mrnumber = {1883371}, language = {en}, url = {http://dml.mathdoc.fr/item/119278} }
Guerrero, Julio Becerra; Palacios, Angel Rodriguez. Characterizations of almost transitive superreflexive Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 629-636. http://gdmltest.u-ga.fr/item/119278/
A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges, Glasgow Math. J. 28 (1986), 121-137. (1986) | MR 0848419
The geometry of convex transitive Banach spaces, Bull. London Math. Soc. 31 (1999), 323-331. (1999) | MR 1673411 | Zbl 0921.46006
Geometric aspects of convex sets with the Radon-Nikodym property, Lecture Notes in Mathematics 993, Springer-Verlag, Berlin, 1983. | MR 0704815 | Zbl 0512.46017
Maximal symmetric norms on Banach spaces, Proc. Roy. Irish Acad. 98A (1998), 121-130. (1998) | MR 1759425 | Zbl 0941.46008
Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 21, Springer-Verlag, Berlin, 1973. | MR 0344849 | Zbl 0583.00016
Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Math. 64, New York. 1993. | MR 1211634 | Zbl 0782.46019
Uniform convexity properties of norms on superreflexive Banach spaces, Israel J. Math. 53 (1986), 81-92. (1986) | MR 0861899
Banach spaces with strongly subdifferentiable norm, Bolletino U.M.I. 7-B (1993), 45-70. (1993) | MR 1216708 | Zbl 0779.46021
Characterisation of normed linear spaces with Mazur's intersection property, Bull. Austral. Math. Soc. 18 (1978), 105-123. (1978) | MR 0493266 | Zbl 0373.46028
Orthonormal systems in Banach spaces and their applications, Math. Proc. Cambridge Philos. Soc. 79 (1976), 493-510. (1976) | MR 0402471 | Zbl 0327.46022
On isometric reflexions in Banach spaces, Math. Physics, Analysis, Geometry 4 (1997), 212-247. (1997) | MR 1484353