Permitted trigonometric thin sets and infinite combinatorics
Repický, Miroslav
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001), p. 609-627 / Harvested from Czech Digital Mathematics Library

We investigate properties of permitted trigonometric thin sets and construct uncountable permitted sets under some set-theoretical assumptions.

Publié le : 2001-01-01
Classification:  03E05,  03E17,  03E50,  42A24
@article{119277,
     author = {Miroslav Repick\'y},
     title = {Permitted trigonometric thin sets and infinite combinatorics},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {42},
     year = {2001},
     pages = {609-627},
     zbl = {1069.03034},
     mrnumber = {1883370},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119277}
}
Repický, Miroslav. Permitted trigonometric thin sets and infinite combinatorics. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 609-627. http://gdmltest.u-ga.fr/item/119277/

Arbault M.J. Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. France 80 (1952), 253-317. (1952) | MR 0055476 | Zbl 0048.04202

Bartoszyński T.; Recław I. Not every $\gamma$-set is strongly meager, Set theory (Bartoszynski T. et al., eds.). Annual Boise extravaganza in set theory conference, 1992/1994, Boise State University, Boise, ID, USA Contemp. Math. 192 (1996), 25-29. (1996) | MR 1367132

Bartoszyński T.; Scheepers M. Remarks on sets related to trigonometric series, Topology Appl. 64 (1995), 133-140. (1995) | MR 1340865

Bary N.K. azbuka Trigonometricheskie ryady, Moskva (1961), English translation A Treatise on Trigonometric Series Macmillan New York (1964). (1964) | MR 0171116

Bukovská Z. Thin sets in trigonometrical series and quasinormal convergence, Math. Slovaca 40 (1990), 53-62. (1990) | MR 1094972

Bukovská Z. Thin sets defined by a sequence of continuous functions, Math. Slovaca 49 (1999), 3 323-344. (1999) | MR 1728243

Bukovská Z.; Bukovský L. Adding small sets to an N-set, Proc. Amer. Math. Soc. 123 (1995), 1367-1373. (1995) | MR 1285977

Bukovský L. Thin sets in a general setting, Tatra Mountains Mathematical Publications 14 (1998), 241-260. (1998) | MR 1651217

Bukovský L.; Kholshchevnikova N.N.; Repický M. Thin sets of harmonic analysis and infinite combinatorics, Real Anal. Exchange 20 (1994/95), 454-509. (1994/95) | MR 1348075

Bukovský L.; Recław I.; Repický M. Spaces not distinguishing convergence of real-valued functions, Topology Appl. 112 (2001), 13-40. (2001)

Galvin F.; Miller A.W. $\gamma$-sets and other singular sets of real numbers, Topology Appl. 17 (1984), 145-155. (1984) | MR 0738943 | Zbl 0551.54001

Just W.; Miller A.W.; Scheepers M.; Szeptycki P.J. The combinatorics of open covers, II, Topology Appl. 73 (1996), 3 241-266. (1996) | MR 1419798 | Zbl 0870.03021

Kada M.; Kamo S. New cardinal invariants related to pseudo-Dirichlet sets, preprint, 1996.

Kahane S. Antistable classes of thin sets in harmonic analysis, Illinois J. Math. 37 (1993), 2 186-223. (1993) | MR 1208819 | Zbl 0793.42003

Kholshchevnikova N.N. Uncountable R- and N-sets, Math. Notes 38 (1985), 847-851. (1985) | MR 0808896

Kholshchevnikova N.N. azbuka Primenenie teoretiko-mnozhestvennykh metodov v teorii ryadov, PhD Thesis Ross. Akad. Nauk Mat. Inst. (V. A. Steklov), Moskva (1993). (1993)

Laflamme C. Combinatorial aspects of $F_\sigma$ filters with an application to N-sets, Proc. Amer. Math. Soc. 125 (1997), 10 3019-3025. (1997) | MR 1401747

Miller A.W. Some properties of measure and category, Trans. Amer. Math. Soc. 226 (1981), 93-144. (1981) | MR 0613787 | Zbl 0472.03040

Repický M. A family of permitted trigonometric thin sets, Proc. Amer. Math. Soc. 125 (1997), 1 137-144. (1997) | MR 1343721

Repický M. Towers and permitted trigonometric thin sets, Real Anal. Exchange 21 (1995/96), 648-655. (1995/96) | MR 1407277

Repický M. Mycielski ideal and the perfect set theorem, preprint, 2001. | MR 2053988