The purpose of the paper is to investigate weak asymptotic behaviour of rank statistics proposed for detection of gradual changes, linear trends in particular. The considered statistics can be used for various test procedures. The fundaments of the proofs are formed by results of Hušková [4] and Jarušková [5].
@article{119274, author = {Ale\v s Slab\'y}, title = {Limit theorems for rank statistics detecting gradual changes}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {591-600}, zbl = {1053.62056}, mrnumber = {1860248}, language = {en}, url = {http://dml.mathdoc.fr/item/119274} }
Slabý, Aleš. Limit theorems for rank statistics detecting gradual changes. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 591-600. http://gdmltest.u-ga.fr/item/119274/
Limit Theorems in Change-Point Analysis, John Wiley & Sons (1997). (1997) | MR 2743035
A useful estimate in the multidimensional invariance principle, Probab. Theory Related Fields (1987), 76 81-101. (1987) | MR 0899446 | Zbl 0608.60029
Theory of Rank Tests, Academia Praha (1967). (1967) | MR 0229351
Limit theorems for rank statistics, Statist. Probab. Lett. 32 (1997), 45-55. (1997) | MR 1439496
Testing appearance of linear trend, J. Statist. Plann. Inference (1998), 70 263-276. (1998) | MR 1649939
Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag Heidelberg (1983). (1983) | MR 0691492
Behaviour of Some Rank Statistics for Detecting Changes, in Measuring Risk in Complex Stochastic Systems (proc. conf.), Berlin, 1999 (Franke J., Härdle W., Stahl G., Eds.), Springer-Verlag, Berlin, 2000, pp.161-172. | MR 1752530