Distributional chaos on tree maps: the star case
Cánovas, Jose S.
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001), p. 583-590 / Harvested from Czech Digital Mathematics Library

Let $\Bbb X =\{z\in \Bbb C:z^n\in [0,1]\}$, $n\in \Bbb N$, and let $f:\Bbb X \rightarrow \Bbb X$ be a continuous map having the branching point fixed. We prove that $f$ is distributionally chaotic iff the topological entropy of $f$ is positive.

Publié le : 2001-01-01
Classification:  37B40,  37D45,  37E25,  54H20
@article{119273,
     author = {Jose S. C\'anovas},
     title = {Distributional chaos on tree maps: the star case},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {42},
     year = {2001},
     pages = {583-590},
     zbl = {1052.37032},
     mrnumber = {1860247},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119273}
}
Cánovas, Jose S. Distributional chaos on tree maps: the star case. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 583-590. http://gdmltest.u-ga.fr/item/119273/

Adler R.L.; Konheim A.G.; Mcandrew M.H. Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. (1965) | MR 0175106 | Zbl 0127.13102

Alsedá L.; Llibre J.; Misiurewicz M. Combinatorial Dynamics and Entropy in Dimension One, World Scientific Publishing, 1993. | MR 1255515

Alsedá L.; Moreno J.M. Linear orderings and the full periodicity kernel for the $n$-star, J. Math. Anal. Appl. 180 (1993), 599-616. (1993) | MR 1251878

Alsedá L.; Ye X. Division for star maps with the branching point fixed, Acta Math. Univ. Comenian. 62 (1993), 237-248. (1993) | MR 1270511

Babilonová M. Distributional chaos for triangular maps, Ann. Math. Sil. 13 (1999), 33-38. (1999) | MR 1735188

Baldwin S. An extension of Sarkovskii's Theorem to the n-od, Ergodic Theory Dynamical Systems 11 (1991), 249-271. (1991) | MR 1116640

Block L.S.; Coppel W.A. Dynamics in one dimension, Lecture Notes in Math. Springer-Verlag, 1992. | MR 1176513 | Zbl 0746.58007

Blokh A. The spectral decomposition for one-dimensional maps, Dynamics Reported (Jones et al, eds.) 4, Springer-Verlag, Berlin, 1995. | MR 1346496 | Zbl 0828.58009

Cánovas J.S.; Ruíz-Marín M.; Soler-López G. Distributional chaos in duopoly games, preprint, 2000.

Forti G.L.; Paganoni L. A distributionally chaotic triangular map with zero topological sequence entropy, Math. Pannon. 9 (1998), 147-152. (1998) | MR 1620434

Forti G.L.; Paganoni L.; Smítal J. Dynamics of homeomorphisms on minimal sets generated by triangular mappings, Bull. Austral. Math. Soc. 59 (1999), 1-20. (1999) | MR 1672771

Hric R. Topological sequence entropy for maps of the circle, Comment. Math. Univ. Carolinae 41 (2000), 53-59. (2000) | MR 1756926 | Zbl 1039.37007

Li T.Y.; Yorke J.A. Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. (1975) | MR 0385028 | Zbl 0351.92021

Liao G.; Fan Q. Minimal subshifts which display Schweizer-Smítal chaos and have zero topological entropy, Science in China 41 (1998), 33-38. (1998) | MR 1612875 | Zbl 0931.54034

Málek M. Distributional chaos for continuous mappings of the circle, Ann. Math. Sil. 13 (1999), 205-210. (1999) | MR 1735203

Llibre J.; Misiurewicz M. Horseshoes, entropy and periods for graph maps, Topology 32 (1993), 649-664. (1993) | MR 1231969 | Zbl 0787.54021

Schweizer B.; Smítal J. Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994), 737-754. (1994) | MR 1227094

Smítal J. Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269-282. (1986) | MR 0849479