Let $\Bbb X =\{z\in \Bbb C:z^n\in [0,1]\}$, $n\in \Bbb N$, and let $f:\Bbb X \rightarrow \Bbb X$ be a continuous map having the branching point fixed. We prove that $f$ is distributionally chaotic iff the topological entropy of $f$ is positive.
@article{119273, author = {Jose S. C\'anovas}, title = {Distributional chaos on tree maps: the star case}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {583-590}, zbl = {1052.37032}, mrnumber = {1860247}, language = {en}, url = {http://dml.mathdoc.fr/item/119273} }
Cánovas, Jose S. Distributional chaos on tree maps: the star case. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 583-590. http://gdmltest.u-ga.fr/item/119273/
Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. (1965) | MR 0175106 | Zbl 0127.13102
Combinatorial Dynamics and Entropy in Dimension One, World Scientific Publishing, 1993. | MR 1255515
Linear orderings and the full periodicity kernel for the $n$-star, J. Math. Anal. Appl. 180 (1993), 599-616. (1993) | MR 1251878
Division for star maps with the branching point fixed, Acta Math. Univ. Comenian. 62 (1993), 237-248. (1993) | MR 1270511
Distributional chaos for triangular maps, Ann. Math. Sil. 13 (1999), 33-38. (1999) | MR 1735188
An extension of Sarkovskii's Theorem to the n-od, Ergodic Theory Dynamical Systems 11 (1991), 249-271. (1991) | MR 1116640
Dynamics in one dimension, Lecture Notes in Math. Springer-Verlag, 1992. | MR 1176513 | Zbl 0746.58007
The spectral decomposition for one-dimensional maps, Dynamics Reported (Jones et al, eds.) 4, Springer-Verlag, Berlin, 1995. | MR 1346496 | Zbl 0828.58009
Distributional chaos in duopoly games, preprint, 2000.
A distributionally chaotic triangular map with zero topological sequence entropy, Math. Pannon. 9 (1998), 147-152. (1998) | MR 1620434
Dynamics of homeomorphisms on minimal sets generated by triangular mappings, Bull. Austral. Math. Soc. 59 (1999), 1-20. (1999) | MR 1672771
Topological sequence entropy for maps of the circle, Comment. Math. Univ. Carolinae 41 (2000), 53-59. (2000) | MR 1756926 | Zbl 1039.37007
Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. (1975) | MR 0385028 | Zbl 0351.92021
Minimal subshifts which display Schweizer-Smítal chaos and have zero topological entropy, Science in China 41 (1998), 33-38. (1998) | MR 1612875 | Zbl 0931.54034
Distributional chaos for continuous mappings of the circle, Ann. Math. Sil. 13 (1999), 205-210. (1999) | MR 1735203
Horseshoes, entropy and periods for graph maps, Topology 32 (1993), 649-664. (1993) | MR 1231969 | Zbl 0787.54021
Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994), 737-754. (1994) | MR 1227094
Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269-282. (1986) | MR 0849479