On equivariant quantum cohomology of homogeneous spaces: Chevalley formulae and algorithms
Mihalcea, Leonardo Constantin
Duke Math. J., Tome 136 (2007) no. 1, p. 321-350 / Harvested from Project Euclid
We prove a Chevalley formula for the equivariant quantum multiplication of two Schubert classes in the homogeneous variety $X=G/P$ . Using this formula, we give an effective algorithm to compute the $3$ -point, genus zero, equivariant Gromov-Witten invariants on $X$ , which are the structure constants of its equivariant quantum cohomology algebra
Publié le : 2007-11-01
Classification:  14N35,  14N15,  57R91,  05E99
@article{1192715422,
     author = {Mihalcea, Leonardo Constantin},
     title = {On equivariant quantum cohomology of homogeneous spaces: Chevalley formulae and algorithms},
     journal = {Duke Math. J.},
     volume = {136},
     number = {1},
     year = {2007},
     pages = { 321-350},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1192715422}
}
Mihalcea, Leonardo Constantin. On equivariant quantum cohomology of homogeneous spaces: Chevalley formulae and algorithms. Duke Math. J., Tome 136 (2007) no. 1, pp.  321-350. http://gdmltest.u-ga.fr/item/1192715422/