We introduce notions of projectively quotient, open, and closed functors. We give sufficient conditions for a functor to be projectively quotient. In particular, any finitary normal functor is projectively quotient. We prove that the sufficient conditions obtained are necessary for an arbitrary subfunctor $\Cal F$ of the functor $\Cal P$ of probability measures. At the same time, any ``good'' functor is neither projectively open nor projectively closed.
@article{119271, author = {T. F. Zhuraev}, title = {On projectively quotient functors}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {561-573}, zbl = {1053.54019}, mrnumber = {1860245}, language = {en}, url = {http://dml.mathdoc.fr/item/119271} }
Zhuraev, T. F. On projectively quotient functors. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 561-573. http://gdmltest.u-ga.fr/item/119271/
Functors and uncountable powers of compact spaces, Uspekhi Mat. Nauk 36 (1981), 3 3-62. (1981) | MR 0622720
Covariant functors, retracts and dimension, Dokl. Akad. Nauk USSR 271 (1983), 1033-1036. (1983) | MR 0722013 | Zbl 0544.54007
Extension of normal functors, Vestnik Mosk. Univ. Ser. I Mat. Mekh. 6 (1984), 40-42. (1984) | MR 0775298 | Zbl 0588.54016
Probability measures in topology, Uspekhi Mat. Nauk 46 (1991), 1 41-80. (1991) | MR 1109036 | Zbl 0735.54033
General Topology: Basic Constructions, Moscow, Mosk. Gos. Univ., 1988. | MR 1095303 | Zbl 0658.54001
General Topology, Warszawa, PWN, 1977. | MR 0500780 | Zbl 0684.54001