We present an example of a complete $\aleph_0$-bounded topological group $H$ which is not $\Bbb R$-factorizable. In addition, every $G_\delta$-set in the group $H$ is open, but $H$ is not Lindelöf.
@article{119270, author = {Mihail G. Tkachenko}, title = {Complete $\aleph\_0$-bounded groups need not be $\Bbb R$-factorizable}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {551-559}, zbl = {1053.54045}, mrnumber = {1860244}, language = {en}, url = {http://dml.mathdoc.fr/item/119270} }
Tkachenko, Mihail G. Complete $\aleph_0$-bounded groups need not be $\Bbb R$-factorizable. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 551-559. http://gdmltest.u-ga.fr/item/119270/
On topological groups close to being Lindelöf, Soviet Math. Dokl. 23 (1981), 173-175. (1981) | Zbl 0478.22002
Lectures in set theory, Lectures Notes in Math. 217, Berlin, 1971. | Zbl 0269.02030
Generalization of a theorem of Comfort and Ross, Ukrainian Math. J. 41 (1989), 334-338; Russian original in Ukrain. Mat. Zh. 41 (1989), 377-382. (1989) | MR 1001546
Subgroups, quotient groups and products of $\Bbb R$-factorizable groups, Topology Proc. 16 (1991), 201-231. (1991) | MR 1206464
Factorization theorems for topological groups and their applications, Topology Appl. 38 (1991), 21-37. (1991) | MR 1093863 | Zbl 0722.54039
Introduction to topological groups, Topology Appl. 86 (1998), 179-231. (1998) | MR 1623960 | Zbl 0955.54013
Box products, in Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan, eds., Chapter 4, North-Holland, Amsterdam, 1984, pp.169-200. | MR 0776623 | Zbl 0769.54008