Let $(L,\Cal T)$ be a Tychonoff (regular) paratopological group or algebra over a field or ring $K$ or a topological semigroup. If $\operatorname{nw}(L,\Cal T)\leq \tau$ and $\operatorname{nw}(K)\leq\tau $, then there exists a Tychonoff (regular) topology $\Cal T^*\subseteq \Cal T$ such that $w(L,\Cal T^*)\leq\tau$ and $(L,\Cal T^*)$ is a paratopological group, algebra over $K$ or a topological semigroup respectively.
@article{119267, author = {Constancio Hern\'andez}, title = {Condensations of Tychonoff universal topological algebras}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {529-533}, zbl = {1053.54044}, mrnumber = {1860241}, language = {en}, url = {http://dml.mathdoc.fr/item/119267} }
Hernández, Constancio. Condensations of Tychonoff universal topological algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 529-533. http://gdmltest.u-ga.fr/item/119267/
Cardinal invariants of topological groups: Enbeddings and condensations, Dokl. Akad. Nauk SSSR 247 (1979), 779-782. (1979) | MR 0553825
Fundamentals of General Topology, D. Reidel Publishing Company, 1984. | MR 0785749 | Zbl 0568.54001
General Topology, Heldermann Verlag, 1989. | MR 1039321 | Zbl 0684.54001
The Doitchinov completion of a regular paratopological group, Serdica Math. J. 24 (1998), 73-88. (1998) | MR 1679193
Condensation of universal topological algebras that preserve continuity of operations and decrease weight, Vestnik Mosk. Univ. 39 (1984), 42-45. (1984) | MR 0741161
Factorization of mappings of topological spaces and homomorphisms of topological groups in accordance with weight and dimension ind, J. Math. Sci. 75 (1995), 3 1754-1769. (1995) | MR 1339205
Minimal topological groups, Math. Ann. 19 (1971), 193-195. (1971) | MR 0286934 | Zbl 0206.31601
Subgroups, quotient groups and products of $\Bbb R$-factorizable groups, Topology Proc. 16 (1991), 201-231. (1991) | MR 1206464