Homomorphic images of subdirectly irreducible groupoids
Stanovský, David
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001), p. 443-450 / Harvested from Czech Digital Mathematics Library

A groupoid $H$ is a homomorphic image of a subdirectly irreducible groupoid $G$ (over its monolith) if and only if $H$ has a smallest ideal.

Publié le : 2001-01-01
Classification:  08A30,  20N02
@article{119258,
     author = {David Stanovsk\'y},
     title = {Homomorphic images of subdirectly irreducible groupoids},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {42},
     year = {2001},
     pages = {443-450},
     zbl = {1057.20049},
     mrnumber = {1859591},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119258}
}
Stanovský, David. Homomorphic images of subdirectly irreducible groupoids. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 443-450. http://gdmltest.u-ga.fr/item/119258/

Ježek J.; Kepka T. Ideal-free CIM-groupoids and open convex sets, Lecture Notes in Math. 1004 166-175 Springer Verlag (1983). (1983) | MR 0716182

Kepka T. On a class of subdirectly irreducible groupoids, Acta Univ. Carolinae Math. Phys. (1981), 22.1 17-24. (1981) | MR 0635973 | Zbl 0478.08005

Kepka T. A note on subdirectly irreducible groupoids, Acta Univ. Carolinae Math. Phys. (1981), 22.1 25-28. (1981) | MR 0635974 | Zbl 0481.08001

Kepka T. On a class of groupoids, Acta Univ. Carolinae Math. Phys. (1981), 22.1 29-49. (1981) | MR 0635975 | Zbl 0481.08002