On remote points, non-normality and $\pi$-weight $\omega_1$
Logunov, Sergei
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001), p. 379-384 / Harvested from Czech Digital Mathematics Library

We show, in particular, that every remote point of $X$ is a nonnormality point of $\beta X$ if $X$ is a locally compact Lindelöf separable space without isolated points and $\pi w(X)\leq \omega _{1}$.

Publié le : 2001-01-01
Classification:  54D20,  54D35,  54D40
@article{119252,
     author = {Sergei Logunov},
     title = {On remote points, non-normality and $\pi$-weight $\omega\_1$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {42},
     year = {2001},
     pages = {379-384},
     zbl = {1053.54031},
     mrnumber = {1832156},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119252}
}
Logunov, Sergei. On remote points, non-normality and $\pi$-weight $\omega_1$. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 379-384. http://gdmltest.u-ga.fr/item/119252/

Blaszczyk A.; Szymanski A. Some nonnormal subspaces of the Čech-Stone compactifications of a discrete space, (1980), in: Proc. 8-th Winter School on Abstract Analysis, Prague. (1980)

Dow A. Remote points in spaces with $\pi $-weight $ømega _ 1$, (1984), 124 Fund. Math. (1984) | MR 0774511

Van Douwen E.K. Why certain Čech-Stone remainders are not homogeneous, (1979), 41 Colloq. Math. (1979) | MR 0550626 | Zbl 0424.54012

Van Douwen E.K. Remote points, (1988), 188 Dissert. Math. (1988)

Gryzlov A.A. On the question of hereditary normality of the space $\beta ømega \setminus ømega $, (1982), Topology and Set Theory (Udmurt. Gos. Univ., Izhevsk). (1982) | MR 0760274

Logunov S. On hereditary normality of compactifications, (1996), 73 Topology Appl. (1996) | MR 1419794 | Zbl 0869.54029

Logunov S. On hereditary normality of zero-dimensional spaces, (2000), 102 Topology Appl. (2000) | MR 1739263 | Zbl 0944.54016

Van Mill J. An easy proof that $\beta N \setminus N \setminus \{p\} $ is non-normal, (1984), 2 Ann. Math. Silesianea. (1984)

Rajagopalan M. $\beta N \setminus N \setminus \{p\} $ is not normal, (1972), 36 J. Indian Math. Soc. (1972) | MR 0321012

Shapirovskij B. On embedding extremely disconnected spaces in compact Hausdorff spaces, b-points and weight of pointwise normal spaces, (1987), 223 Dokl. Akad. Nauk SSSR. (1987)