We show, in particular, that every remote point of $X$ is a nonnormality point of $\beta X$ if $X$ is a locally compact Lindelöf separable space without isolated points and $\pi w(X)\leq \omega _{1}$.
@article{119252, author = {Sergei Logunov}, title = {On remote points, non-normality and $\pi$-weight $\omega\_1$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {379-384}, zbl = {1053.54031}, mrnumber = {1832156}, language = {en}, url = {http://dml.mathdoc.fr/item/119252} }
Logunov, Sergei. On remote points, non-normality and $\pi$-weight $\omega_1$. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 379-384. http://gdmltest.u-ga.fr/item/119252/
Some nonnormal subspaces of the Čech-Stone compactifications of a discrete space, (1980), in: Proc. 8-th Winter School on Abstract Analysis, Prague. (1980)
Remote points in spaces with $\pi $-weight $ømega _ 1$, (1984), 124 Fund. Math. (1984) | MR 0774511
Why certain Čech-Stone remainders are not homogeneous, (1979), 41 Colloq. Math. (1979) | MR 0550626 | Zbl 0424.54012
Remote points, (1988), 188 Dissert. Math. (1988)
On the question of hereditary normality of the space $\beta ømega \setminus ømega $, (1982), Topology and Set Theory (Udmurt. Gos. Univ., Izhevsk). (1982) | MR 0760274
On hereditary normality of compactifications, (1996), 73 Topology Appl. (1996) | MR 1419794 | Zbl 0869.54029
On hereditary normality of zero-dimensional spaces, (2000), 102 Topology Appl. (2000) | MR 1739263 | Zbl 0944.54016
An easy proof that $\beta N \setminus N \setminus \{p\} $ is non-normal, (1984), 2 Ann. Math. Silesianea. (1984)
$\beta N \setminus N \setminus \{p\} $ is not normal, (1972), 36 J. Indian Math. Soc. (1972) | MR 0321012
On embedding extremely disconnected spaces in compact Hausdorff spaces, b-points and weight of pointwise normal spaces, (1987), 223 Dokl. Akad. Nauk SSSR. (1987)