Given a rotation invariant measure in $\Bbb R^n$, we define the maximal operator over circular sectors. We prove that it is of strong type $(p,p)$ for $p>1$ and we give necessary and sufficient conditions on the measure for the weak type $(1,1)$ inequality. Actually we work in a more general setting containing the above and other situations.
@article{119245, author = {Hugo A. Aimar and Liliana Forzani and Virginia Naibo}, title = {On maximal functions over circular sectors with rotation invariant measures}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {311-318}, zbl = {1054.42014}, mrnumber = {1832149}, language = {en}, url = {http://dml.mathdoc.fr/item/119245} }
Aimar, Hugo A.; Forzani, Liliana; Naibo, Virginia. On maximal functions over circular sectors with rotation invariant measures. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 311-318. http://gdmltest.u-ga.fr/item/119245/
A remark on the maximal functions for measures in $\Bbb R^n$, Amer. J. Math. 105 (1983), 1231-1233. (1983) | MR 0714775
Analyse harmonique non-commutative sur certains espaces homogènes, étude de certaines intégrales singulières, Lectures Notes in Math., Vol 242, Springer-Verlag, 1971. | MR 0499948 | Zbl 0224.43006
Problems and Theorems in Analysis, Volume I, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
Real Variable Methods in Fourier Analysis, North Holland, Amsterdam, 1981. | MR 0596037
Lipschitz functions on spaces of homogeneous type, Advances in Mathematics 33 (1979), 257-270. (1979) | MR 0546295
Extensions of a theorem of Stein and Zygmund, preprint.