Kneser-type theorem for the Darboux problem in Banach spaces
Cichoń, Mieczysław ; Kubiaczyk, Ireneusz
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001), p. 267-279 / Harvested from Czech Digital Mathematics Library

In this paper we study the Darboux problem in some class of Banach spaces. The right-hand side of this problem is a Pettis-integrable function satisfying some conditions expressed in terms of measures of weak noncompactness. We prove that the set of all local pseudo-solutions of our problem is nonempty, compact and connected in the space of continuous functions equipped with the weak topology.

Publié le : 2001-01-01
Classification:  35L90,  35R20,  46G10
@article{119242,
     author = {Mieczys\l aw Cicho\'n and Ireneusz Kubiaczyk},
     title = {Kneser-type theorem for the Darboux problem in Banach spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {42},
     year = {2001},
     pages = {267-279},
     zbl = {1115.35141},
     mrnumber = {1832146},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119242}
}
Cichoń, Mieczysław; Kubiaczyk, Ireneusz. Kneser-type theorem for the Darboux problem in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 267-279. http://gdmltest.u-ga.fr/item/119242/

Alexiewicz A.; Orlicz W. Some remarks on the existence and uniqueness of solutions of the hyperbolic equation, Studia Math. 15 156-160 (1956). (1956) | MR 0079711 | Zbl 0070.09204

Ball J.M. Weak continuity properties of mappings and semi-groups, Proc. Royal Soc. Edinbourgh Sect.A 72 275-280 (1979). (1979) | MR 0397495

Deblasi F. On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 259-262 (1977). (1977) | MR 0482402

Deblasi F.; Myjak J. On the structure of the set of solutions of the Darboux problem for hyperbolic equations, Proc. Edinbourgh Math. Soc. Ser.2 29 17-23 (1986). (1986) | MR 0829175

Bugajewski D.; Szufla S. Kneser's theorem for weak solutions of the Darboux problem in Banach spaces, Nonlinear Analysis T.M.A. 20 169-173 (1993). (1993) | MR 1200387 | Zbl 0776.34048

Cichoń M. Weak solutions of differential equations in Banach spaces, Disc. Math. Differential Inclusions 15 5-14 (1995). (1995) | MR 1344523

Cichoń M.; Kubiaczyk I. On the set of solutions of the Cauchy problem in Banach spaces, Arch. Math. 63 251-257 (1994). (1994) | MR 1287254

Cichoń M.; Kubiaczyk I. Kneser's theorems for strong, weak and pseudo-solutions of ordinary differential equations in Banach spaces, Annales Polon. Math. 62 13-21 (1995). (1995) | MR 1348215 | Zbl 0836.34062

Dawidowski M.; Kubiaczyk I. On bounded solutions of hyperbolic differential inclusion in Banach spaces, Demonstratio Math. 25 153-159 (1992). (1992) | MR 1170678 | Zbl 0780.35120

Dragoni R.; Macki J.W.; Nistri P.; Zecca P. Solution Sets of Differential Equations in Abstract Spaces, Pitman Research Notes in Mathematics Series 342, Longman, 1996. | MR 1427944 | Zbl 0847.34004

Van Dulst D. Characterizations of Banach Spaces Not Containing $l^1$, CWI Tract, Amsterdam, 1989. | MR 1002733

Geitz R.F. Pettis integration, Proc. Amer. Math. Soc. 82 81-86 (1981). (1981) | MR 0603606 | Zbl 0506.28007

Górniewicz L.; Pruszko T. On the set of solutions of the Darboux problem for some hyperbolic equations, Bull. Acad. Polon. Sci. Math. 28 279-286 (1980). (1980) | MR 0620202

Górniewicz L.; Bryszewski J.; Pruszko T. An application of the topological degree theory to the study of the Darboux problem for hyperbolic equations, J. Math. Anal. Appl. 76 107-115 (1980). (1980) | MR 0586649

Knight W.J. Solutions of differential equations in B-spaces, Duke Math. J. 41 437-442 (1974). (1974) | MR 0344624 | Zbl 0288.34063

Kubiaczyk I. On a fixed point theorem for weakly sequentially continuous mapping, Disc. Math. Differential Inclusions 15 15-20 (1995). (1995) | MR 1344524

Michalak A. On the Fubini theorem for the Pettis integral for bounded functions, Bull. Polish Sci. Math. 49 (1) (2001), in press. (2001) | MR 1824153 | Zbl 0995.46026

Mitchell A.R.; Smith Ch. An existence theorem for weak solutions of differential equations in Banach spaces, in Nonlinear Equations in Abstract Spaces, ed. by V. Laksmikantham, 1978, pp.387-404. | MR 0502554 | Zbl 0452.34054

Negrini P. Sul problema di Darboux negli spazi di Banach, Boll. U.M.I. (5) 17-A 201-215 (1956). (1956)

O'Regan D. Fixed point theory for weakly sequentially continuous mappings, to appear.

Pettis B.J. On integration in vector spaces, Trans. Amer. Math. Soc. 44 277-304 (1938). (1938) | MR 1501970 | Zbl 0019.41603

Szep A. Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bull. Acad. Polon. Sci. Math. 26 407-413 (1978). (1978)