The main result: Let $R$ be a $2$-torsion free semiprime ring and let $T:R\rightarrow R$ be an additive mapping. Suppose that $T(xyx) = xT(y)x$ holds for all $x,y\in R$. In this case $T$ is a centralizer.
@article{119239, author = {Joso Vukman}, title = {Centralizers on semiprime rings}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {237-245}, zbl = {1057.16029}, mrnumber = {1832143}, language = {en}, url = {http://dml.mathdoc.fr/item/119239} }
Vukman, Joso. Centralizers on semiprime rings. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 237-245. http://gdmltest.u-ga.fr/item/119239/
Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-322. (1988) | MR 0943433
Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006. (1988) | MR 0929422
Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228. (1989) | MR 1029414
Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324. (1975) | MR 0399182 | Zbl 0327.16020
Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110. (1957) | MR 0095864
An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolinae 40 (1999), 447-456. (1999) | MR 1732490 | Zbl 1014.16021
On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991), 609-614. (1991) | MR 1159807 | Zbl 0746.16011