Every lower semi-continuous closed-and-convex valued mapping $\Phi : X\rightarrow 2^{Y}$, where $X$ is a $\Sigma$-product of metrizable spaces and $Y$ is a Hilbert space, has a single-valued continuous selection. This improves an earlier result of the author.
@article{119235, author = {Ivailo Shishkov}, title = {$\Sigma$-products and selections of set-valued mappings}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {203-207}, zbl = {1053.54029}, mrnumber = {1825384}, language = {en}, url = {http://dml.mathdoc.fr/item/119235} }
Shishkov, Ivailo. $\Sigma$-products and selections of set-valued mappings. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 203-207. http://gdmltest.u-ga.fr/item/119235/
Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186. (1951) | MR 0043449 | Zbl 0042.41301
Continuous selections for mappings with generalized ordered domain, Math. Balkanica, New Series 11 , Fasc. 1-2 (1997), 87-95. (1997) | MR 1606612 | Zbl 0943.46003
Normality of subsets of product spaces, Amer. J. Math. 81 (1959), 785-796. (1959) | MR 0107222
Une généralisation des espaces compacts, J. de Math. Pures et Appl. 23 (1944), 65-76. (1944) | MR 0013297
General Topology, PWN, Warszawa, 1985. | Zbl 0684.54001
Properties of sets lying in $\Sigma$-products, Dokl. AN SSSR, 1977.
Paracompactness of topological completions, Fund. Math. 92 (1976), 65-77. (1976) | MR 0418039 | Zbl 0354.54009
On the extension of locally finite coverings (in Russian), Colloq. Math. 6 (1958), 145-151. (1958) | MR 0103450
Continuous selections: I, Ann. Math. 63 (1956), 562-590. (1956) | MR 0077107 | Zbl 0071.15902
$\Sigma$-products of metric spaces are normal, preprint (see [5], the problems to Chapter 4).
Extensions of l.s.c. mappings into reflexive Banach spaces, Set-Valued Analysis, to appear. | MR 1888457 | Zbl 1018.54012
Selections of l.s.c. mappings into Hilbert spaces, Compt. rend. Acad. Bulg. Sci. 53.7 (2000). (2000) | MR 1779519