A non-connected, Hausdorff space with a countable network has a connected Hausdorff-subtopology iff the space is not-H-closed. This result answers two questions posed by Tkačenko, Tkachuk, Uspenskij, and Wilson [Comment. Math. Univ. Carolinae 37 (1996), 825--841]. A non-H-closed, Hausdorff space with countable $\pi $-weight and no connected, Hausdorff subtopology is provided.
@article{119234, author = {Jack R. Porter}, title = {Connected Hausdorff subtopologies}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {195-201}, zbl = {1053.54002}, mrnumber = {1825383}, language = {en}, url = {http://dml.mathdoc.fr/item/119234} }
Porter, Jack R. Connected Hausdorff subtopologies. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 195-201. http://gdmltest.u-ga.fr/item/119234/
On Katětov spaces, Trans. Amer. Math. Soc. 289 (4) (1985), 59-71. (1985) | MR 0779052
Space with coarser minimal Hausdorff topologies, Canad. Math. Bull. 32.4 (1989), 425-433. (1989)
Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, Berlin, 1988. | MR 0918341 | Zbl 0652.54016
Subspaces of connected spaces, Topology Appl. 68 (1996), 113-131. (1996) | MR 1374077 | Zbl 0855.54025
Private communication, 1984, .
In quest of weaker connected topologies, Comment. Math Univ. Carolinae 37.4 (1996), 825-841. (1996) | MR 1440714