Connected Hausdorff subtopologies
Porter, Jack R.
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001), p. 195-201 / Harvested from Czech Digital Mathematics Library

A non-connected, Hausdorff space with a countable network has a connected Hausdorff-subtopology iff the space is not-H-closed. This result answers two questions posed by Tkačenko, Tkachuk, Uspenskij, and Wilson [Comment. Math. Univ. Carolinae 37 (1996), 825--841]. A non-H-closed, Hausdorff space with countable $\pi $-weight and no connected, Hausdorff subtopology is provided.

Publié le : 2001-01-01
Classification:  54A10,  54C10,  54D05,  54D35
@article{119234,
     author = {Jack R. Porter},
     title = {Connected Hausdorff subtopologies},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {42},
     year = {2001},
     pages = {195-201},
     zbl = {1053.54002},
     mrnumber = {1825383},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119234}
}
Porter, Jack R. Connected Hausdorff subtopologies. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 195-201. http://gdmltest.u-ga.fr/item/119234/

Porter J.R.; Tikoo M.L. On Katětov spaces, Trans. Amer. Math. Soc. 289 (4) (1985), 59-71. (1985) | MR 0779052

Porter J.R.; Vermeer J. Space with coarser minimal Hausdorff topologies, Canad. Math. Bull. 32.4 (1989), 425-433. (1989)

Porter J.R.; Woods R.G. Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, Berlin, 1988. | MR 0918341 | Zbl 0652.54016

Porter J.R.; Woods R.G. Subspaces of connected spaces, Topology Appl. 68 (1996), 113-131. (1996) | MR 1374077 | Zbl 0855.54025

Vermeer J. Private communication, 1984, .

Tkačenko M.G.; Tkachuk V.V.; Uspenskij V.V.; Wilson R.G. In quest of weaker connected topologies, Comment. Math Univ. Carolinae 37.4 (1996), 825-841. (1996) | MR 1440714