For a topological space $X$ let $\Cal K (X)$ be the set of all compact subsets of $X$. The purpose of this paper is to characterize Lindelöf Čech-complete spaces $X$ by means of the sets $\Cal K (X)$. Similar characterizations also hold for Lindelöf locally compact $X$, as well as for countably $K$-determined spaces $X$. Our results extend a classical result of J. Christensen.
@article{119233, author = {Themba Dube and Vesko M. Valov}, title = {Generalized tri-quotient maps and \v Cech-completeness}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {187-194}, zbl = {1053.54021}, mrnumber = {1825382}, language = {en}, url = {http://dml.mathdoc.fr/item/119233} }
Dube, Themba; Valov, Vesko M. Generalized tri-quotient maps and Čech-completeness. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 187-194. http://gdmltest.u-ga.fr/item/119233/
Čech-complete spaces and the upper topology, Topology Appl. 70 (1996), 133-138. (1996) | MR 1397071 | Zbl 0860.54002
Topology and Borel Structure, North-Holland, Amsterdam, 1974. | MR 0348724 | Zbl 0273.28001
On monotone generalizations of Moore spaces, Čech-complete spaces and p-spaces, Fund. Math. 84 (1974), 107-119. (1974) | MR 0343244
Analytic Sets, Academic Press, London, 1980. | Zbl 0589.54047
$\aleph_0$-spaces, J. Mathematics and Mechanics 15.6 (1966), 983 -1002. (1966)
Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier, Grenoble 18 (1968), 2 287-302. (1968) | MR 0244964 | Zbl 0175.19704
A quintuple quotient quest, General Topology and Appl. 2 (1972), 91-138. (1972) | MR 0309045 | Zbl 0238.54009
Complete spaces and tri-quotient maps, Illinois J. Math. 21 (1977), 716-733. (1977) | MR 0467688 | Zbl 0386.54007
$\Sigma$-spaces, Fund. Math. 65 (1969), 169-192. (1969) | MR 0257963 | Zbl 0181.50701
Caratérisations d'espaces polonais, Sém. Choquet (Initiation Anal.) 5 (1971-1973), 10.
Bounded function spaces with the compact open topology, Bull. Acad. Polish Sci. 45.2 (1997), 171-179. (1997) | MR 1466842
Spaces of bounded functions, Houston J. Math. 25.3 (1999), 501-521. (1999) | MR 1730884 | Zbl 0968.46019