We show that if $X$ is a $\Sigma _1^1$ separable metrizable space which is not $\sigma $-compact then $C_p^* (X)$, the space of bounded real-valued continuous functions on $X$ with the topology of pointwise convergence, is Borel-$\Pi _1^1$-complete. Assuming projective determinacy we show that if $X$ is projective not $\sigma $-compact and $n$ is least such that $X$ is $\Sigma _n^1$ then $C_p (X)$, the space of real-valued continuous functions on $X$ with the topology of pointwise convergence, is Borel-$\Pi _n^1$-complete. We also prove a simultaneous improvement of theorems of Christensen and Kechris regarding the complexity of a subset of the hyperspace of the closed sets of a Polish space.
@article{119231, author = {Alessandro Andretta and Alberto Marcone}, title = {Pointwise convergence and the Wadge hierarchy}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {159-172}, zbl = {1052.03023}, mrnumber = {1825380}, language = {en}, url = {http://dml.mathdoc.fr/item/119231} }
Andretta, Alessandro; Marcone, Alberto. Pointwise convergence and the Wadge hierarchy. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 159-172. http://gdmltest.u-ga.fr/item/119231/
A contribution to the topological classification of the spaces $C_p(X)$, Fund. Math. 142 (1993), 269-301. (1993) | MR 1220554
Topology and Borel Structure, North-Holland, 1974. | MR 0348724 | Zbl 0273.28001
Studies in Borel Sets, Ph.D. thesis, University of California at Berkeley, 1994.
Function spaces of low Borel complexity, Proc. Amer. Math. Soc. 94 (1985), 703-710. (1985) | MR 0792287 | Zbl 0525.54010
Classifications of function spaces with the pointwise topology determined by a countable dense set, Fund. Math. 148 (1995), 35-62. (1995) | MR 1354937
On topological classification of function spaces $C_p(X)$ of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307-324. (1991) | MR 1065602
General Topology, Heldermann, 1989. | MR 1039321 | Zbl 0684.54001
Classical Descriptive Set Theory, Springer-Verlag, 1995. | MR 1321597 | Zbl 0819.04002
On the concept of ${\Pi}^{1}_{1}$-completeness, Proc. Amer. Math. Soc. 125 (1997), 1811-1814. (1997) | MR 1372034 | Zbl 0864.03034
The structure of $\sigma$-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. (1987) | MR 0879573 | Zbl 0633.03043
Topology, vol. 1, Academic Press, 1966. | MR 0217751
Descriptive complexity of function spaces, Trans. Amer. Math. Soc. 291 (1985), 121-128. (1985) | MR 0797049 | Zbl 0574.54042
On analytic and coanalytic function spaces $C_p(X)$, Topology Appl. 50 (1993), 241-248. (1993) | MR 1227552
Infinite-Dimensional Topology, North-Holland, 1989. | MR 0977744 | Zbl 1027.57022
On analyticity in cosmic spaces, Comment. Math. Univ. Carolinae 34 (1993), 185-190. (1993) | MR 1240216 | Zbl 0837.54009
Reducibility and Determinateness on the Baire Space, Ph.D. thesis, University of California at Berkeley, 1983.