Pointwise convergence and the Wadge hierarchy
Andretta, Alessandro ; Marcone, Alberto
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001), p. 159-172 / Harvested from Czech Digital Mathematics Library

We show that if $X$ is a $\Sigma _1^1$ separable metrizable space which is not $\sigma $-compact then $C_p^* (X)$, the space of bounded real-valued continuous functions on $X$ with the topology of pointwise convergence, is Borel-$\Pi _1^1$-complete. Assuming projective determinacy we show that if $X$ is projective not $\sigma $-compact and $n$ is least such that $X$ is $\Sigma _n^1$ then $C_p (X)$, the space of real-valued continuous functions on $X$ with the topology of pointwise convergence, is Borel-$\Pi _n^1$-complete. We also prove a simultaneous improvement of theorems of Christensen and Kechris regarding the complexity of a subset of the hyperspace of the closed sets of a Polish space.

Publié le : 2001-01-01
Classification:  03E15,  28A05,  54C35,  54H05
@article{119231,
     author = {Alessandro Andretta and Alberto Marcone},
     title = {Pointwise convergence and the Wadge hierarchy},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {42},
     year = {2001},
     pages = {159-172},
     zbl = {1052.03023},
     mrnumber = {1825380},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119231}
}
Andretta, Alessandro; Marcone, Alberto. Pointwise convergence and the Wadge hierarchy. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 159-172. http://gdmltest.u-ga.fr/item/119231/

Cauty R.; Dobrowolski T.; Marciszewski W. A contribution to the topological classification of the spaces $C_p(X)$, Fund. Math. 142 (1993), 269-301. (1993) | MR 1220554

Christensen J.P.R. Topology and Borel Structure, North-Holland, 1974. | MR 0348724 | Zbl 0273.28001

Dasgupta A. Studies in Borel Sets, Ph.D. thesis, University of California at Berkeley, 1994.

Dijkstra J.; Grilliot T.; Lutzer D.; Van Mill J. Function spaces of low Borel complexity, Proc. Amer. Math. Soc. 94 (1985), 703-710. (1985) | MR 0792287 | Zbl 0525.54010

Dobrowolski T.; Marciszewski W. Classifications of function spaces with the pointwise topology determined by a countable dense set, Fund. Math. 148 (1995), 35-62. (1995) | MR 1354937

Dobrowolski T.; Marciszewski W.; Mogilski J. On topological classification of function spaces $C_p(X)$ of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307-324. (1991) | MR 1065602

Engelking R. General Topology, Heldermann, 1989. | MR 1039321 | Zbl 0684.54001

Kechris A.S. Classical Descriptive Set Theory, Springer-Verlag, 1995. | MR 1321597 | Zbl 0819.04002

Kechris A.S. On the concept of ${\Pi}^{1}_{1}$-completeness, Proc. Amer. Math. Soc. 125 (1997), 1811-1814. (1997) | MR 1372034 | Zbl 0864.03034

Kechris A.S.; Louveau A.; Woodin W.H. The structure of $\sigma$-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. (1987) | MR 0879573 | Zbl 0633.03043

Kuratowski K. Topology, vol. 1, Academic Press, 1966. | MR 0217751

Lutzer D.; Van Mill J.; Pol R. Descriptive complexity of function spaces, Trans. Amer. Math. Soc. 291 (1985), 121-128. (1985) | MR 0797049 | Zbl 0574.54042

Marciszewski W. On analytic and coanalytic function spaces $C_p(X)$, Topology Appl. 50 (1993), 241-248. (1993) | MR 1227552

Van Mill J. Infinite-Dimensional Topology, North-Holland, 1989. | MR 0977744 | Zbl 1027.57022

Okunev O. On analyticity in cosmic spaces, Comment. Math. Univ. Carolinae 34 (1993), 185-190. (1993) | MR 1240216 | Zbl 0837.54009

Wadge W. Reducibility and Determinateness on the Baire Space, Ph.D. thesis, University of California at Berkeley, 1983.