Let $X$ be a non-reflexive real Banach space. Then for each norm $|\cdot|$ from a dense set of equivalent norms on $X$ (in the metric of uniform convergence on the unit ball of $X$), there exists a three-point set that has no Chebyshev center in $(X,|\cdot|)$. This result strengthens theorems by Davis and Johnson, van Dulst and Singer, and Konyagin.
@article{119230, author = {Libor Vesel\'y}, title = {For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {153-158}, zbl = {1056.46009}, mrnumber = {1825379}, language = {en}, url = {http://dml.mathdoc.fr/item/119230} }
Veselý, Libor. For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 153-158. http://gdmltest.u-ga.fr/item/119230/
A renorming of non-reflexive Banach spaces, Israel J. Math. 14 (1973), 353-367. (1973) | MR 0322481
On Kadec-Klee norms on Banach spaces, Studia Math. 54 (1976), 205-211. (1976) | MR 0394132 | Zbl 0321.46012
A course in optimization and best approximation, Lecture Notes in Mathematics 257, Springer-Verlag, 1972. | MR 0420367
Reflexivity and the supremum of linear functionals, Ann. Math. 66 (1957), 159-169. (1957) | MR 0090019 | Zbl 0079.12704
A remark on renormings of nonreflexive spaces and the existence of a Chebyshev center, Moscow Univ. Math. Bull. 43 2 (1988), 55-56. (1988) | MR 0938075
A geometric proof of a theorem about non-dual renormings, Proc. Amer. Math. Soc. 127 (1999), 2807-2809. (1999) | MR 1670431