For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center
Veselý, Libor
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001), p. 153-158 / Harvested from Czech Digital Mathematics Library

Let $X$ be a non-reflexive real Banach space. Then for each norm $|\cdot|$ from a dense set of equivalent norms on $X$ (in the metric of uniform convergence on the unit ball of $X$), there exists a three-point set that has no Chebyshev center in $(X,|\cdot|)$. This result strengthens theorems by Davis and Johnson, van Dulst and Singer, and Konyagin.

Publié le : 2001-01-01
Classification:  41A65,  46B03,  46B20
@article{119230,
     author = {Libor Vesel\'y},
     title = {For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {42},
     year = {2001},
     pages = {153-158},
     zbl = {1056.46009},
     mrnumber = {1825379},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119230}
}
Veselý, Libor. For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 153-158. http://gdmltest.u-ga.fr/item/119230/

Davis W.J.; Johnson W.B. A renorming of non-reflexive Banach spaces, Israel J. Math. 14 (1973), 353-367. (1973) | MR 0322481

Van Dulst D.; Singer I. On Kadec-Klee norms on Banach spaces, Studia Math. 54 (1976), 205-211. (1976) | MR 0394132 | Zbl 0321.46012

Holmes R.B. A course in optimization and best approximation, Lecture Notes in Mathematics 257, Springer-Verlag, 1972. | MR 0420367

James R.C. Reflexivity and the supremum of linear functionals, Ann. Math. 66 (1957), 159-169. (1957) | MR 0090019 | Zbl 0079.12704

Konyagin S.V. A remark on renormings of nonreflexive spaces and the existence of a Chebyshev center, Moscow Univ. Math. Bull. 43 2 (1988), 55-56. (1988) | MR 0938075

Veselý L. A geometric proof of a theorem about non-dual renormings, Proc. Amer. Math. Soc. 127 (1999), 2807-2809. (1999) | MR 1670431