The note develops results from [5] where an invariance under the Möbius transform mapping the upper halfplane onto itself of the Weinstein operator $W_k:=\Delta+\frac k{x_n}\frac{\partial}{\partial x_n}$ on $\Bbb R^n$ is proved. In this note there is shown that in the cases $k\neq 0$, $k\neq 2$ no other transforms of this kind exist and for case $k=2$, all such transforms are described.
@article{119226, author = {Martina \v Sim\r unkov\'a}, title = {On Kelvin type transformation for Weinstein operator}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {99-109}, zbl = {1115.31002}, mrnumber = {1825375}, language = {en}, url = {http://dml.mathdoc.fr/item/119226} }
Šimůnková, Martina. On Kelvin type transformation for Weinstein operator. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 99-109. http://gdmltest.u-ga.fr/item/119226/
Foundation of Potential Theory, Springer-Verlag, Berlin, 1929 (reissued 1967). | MR 0222317
On the Appell transformation, in: Potential Theory (ed. J. Král et al.), Plenum Press, New York, 1987, pp.215-222. | MR 0986298 | Zbl 0685.35006
Appell type transformation for the Kolmogorov type operator, Math. Nachr. 169 (1994), 59-67. (1994) | MR 1292797
On the harmonic morphism for the Kolmogorov type operators, in: Potential Theory - ICPT 94, Walter de Gruyter, Berlin, 1996, pp.341-357. | MR 1404718
On the invariance of the solutions of the Weinstein equation under Möbius transformations, in: Classical and Modern Potential Theory and Applications (ed. K. GowriSankaran et al.), Kluwer Academic Publishers, 1994, pp.19-29. | MR 1321603 | Zbl 0869.31005