We show compactness of bounded sets of weak solutions to the isentropic compressible Navier-Stokes equations in three space dimensions under the hypothesis that the adiabatic constant $\gamma >3/2$.
@article{119225, author = {Eduard Feireisl}, title = {On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {83-98}, zbl = {1115.35096}, mrnumber = {1825374}, language = {en}, url = {http://dml.mathdoc.fr/item/119225} }
Feireisl, Eduard. On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 83-98. http://gdmltest.u-ga.fr/item/119225/
Solution of some vector analysis problems connected with operators div and grad (in Russian), Trudy Sem. S.L. Sobolev 80(1) 5-40 (1980). (1980) | MR 0631691
On the equation $rot v = g$ and $div u = f$ with zero boundary conditions, Hokkaido Math. J. 19 67-87 (1990). (1990) | MR 1039466
Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 511-547 (1989). (1989) | MR 1022305 | Zbl 0696.34049
On the motion of a viscous compressible flow driven by a time-periodic external flow, Arch. Rational Mech. Anal. 149 69-96 (1999). (1999) | MR 1723036
On compactness of solutions to the Navier-Stokes equations of compressible flow, J. Differential Equations 163(1) 57-75 (2000). (2000) | MR 1755068
On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow, Commun. Partial Differential Equations 25(3-4) 755-767 (2000). (2000) | MR 1748351
An Introduction to the Mathematical Theory of the Navier-Stokes Equations, I., Springer-Verlag, New York, 1994.
On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, preprint, 1999. | MR 1810944 | Zbl 0980.35126
Mathematical Topics in Fluid Dynamics, Vol.2, Compressible Models, Oxford Science Publication, Oxford, 1998. | MR 1637634
Bornes sur la densité pour les équations de Navier-Stokes compressible isentropiques avec conditions aux limites de Dirichlet, C.R. Acad. Sci. Paris, Sér I. 328 659-662 (1999). (1999) | MR 1680813
An $L^p$ theorem for compensated compactness, Proc. Royal Soc. Edinburgh 122A (1992), 177-189. (1992) | MR 1190238 | Zbl 0848.32025