On a certain converse statement of the Filippov-Ważewski relaxation theorem
Cernea, Aurelian
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001), p. 77-81 / Harvested from Czech Digital Mathematics Library

A certain converse statement of the Filippov-Wa\v zewski theorem is proved. This result extends to the case of time dependent differential inclusions a previous result of Jo'o and Tallos in [5] obtained for autonomous differential inclusions.

Publié le : 2001-01-01
Classification:  34A60
@article{119224,
     author = {Aurelian Cernea},
     title = {On a certain converse statement of the Filippov-Wa\.zewski relaxation theorem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {42},
     year = {2001},
     pages = {77-81},
     zbl = {1052.34014},
     mrnumber = {1825373},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119224}
}
Cernea, Aurelian. On a certain converse statement of the Filippov-Ważewski relaxation theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 77-81. http://gdmltest.u-ga.fr/item/119224/

Aubin J.P.; Cellina A. Differential Inclusions, Springer, Berlin, 1984. | MR 0755330 | Zbl 0538.34007

Aubin J.P.; Frankowska H. Set-valued Analysis, Birkhäuser, Basel, Boston, 1989. | MR 1048347 | Zbl 1168.49014

Frankowska H. Local controllability and infinitesimal generators of semi-groups of set-valued maps, SIAM J. Control Optim. 25 (1987), 412-431. (1987) | MR 0877070

Frankowska H. Control of Nonlinear Systems and Differential Inclusions, Birkhäuser, to appear.

Joó I.; Tallos P. The Filippov-Wažewski Relaxation Theorem revisited, Acta Math. Hungar. 83 (1999), 171-177. (1999) | MR 1682910

Zhu Q.J. On the solution set of differential inclusions in Banach space, J. Differential Equations 93 (1991), 213-237. (1991) | MR 1125218 | Zbl 0735.34017