A certain converse statement of the Filippov-Wa\v zewski theorem is proved. This result extends to the case of time dependent differential inclusions a previous result of Jo'o and Tallos in [5] obtained for autonomous differential inclusions.
@article{119224, author = {Aurelian Cernea}, title = {On a certain converse statement of the Filippov-Wa\.zewski relaxation theorem}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {42}, year = {2001}, pages = {77-81}, zbl = {1052.34014}, mrnumber = {1825373}, language = {en}, url = {http://dml.mathdoc.fr/item/119224} }
Cernea, Aurelian. On a certain converse statement of the Filippov-Ważewski relaxation theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) pp. 77-81. http://gdmltest.u-ga.fr/item/119224/
Differential Inclusions, Springer, Berlin, 1984. | MR 0755330 | Zbl 0538.34007
Set-valued Analysis, Birkhäuser, Basel, Boston, 1989. | MR 1048347 | Zbl 1168.49014
Local controllability and infinitesimal generators of semi-groups of set-valued maps, SIAM J. Control Optim. 25 (1987), 412-431. (1987) | MR 0877070
Control of Nonlinear Systems and Differential Inclusions, Birkhäuser, to appear.
The Filippov-Wažewski Relaxation Theorem revisited, Acta Math. Hungar. 83 (1999), 171-177. (1999) | MR 1682910
On the solution set of differential inclusions in Banach space, J. Differential Equations 93 (1991), 213-237. (1991) | MR 1125218 | Zbl 0735.34017