In the present paper we introduce a convergence condition $(\Sigma ')$ and continue the study of ``not distinguish'' for various kinds of convergence of sequences of real functions on a topological space started in [2] and [3]. We compute cardinal invariants associated with introduced properties of spaces.
@article{119215, author = {Miroslav Repick\'y}, title = {Spaces not distinguishing convergences}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {829-842}, zbl = {1067.54028}, mrnumber = {1800160}, language = {en}, url = {http://dml.mathdoc.fr/item/119215} }
Repický, Miroslav. Spaces not distinguishing convergences. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 829-842. http://gdmltest.u-ga.fr/item/119215/
Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213. (1984) | MR 0719666
Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology Appl. 41 (1991), 25-40. (1991) | MR 1129696
Spaces not distinguishing convergences of real-valued functions, Topology Appl., to appear.
The integers and topology, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North Holland, Amsterdam, 1984, pp.111-167. | MR 0776622 | Zbl 0561.54004
General Topology, Państwowe Wydawnictwo Naukowe, Warszawa, 1977. | MR 0500779 | Zbl 0684.54001
New cardinal invariants related to pseudo-Dirichlet sets, preprint, 1996.
Topologie I, PWN, Warsaw, 1958. | Zbl 0849.01044
Special subsets of the real line, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North Holland, Amsterdam, 1984, pp.201-233. | MR 0776624 | Zbl 0588.54035
Metric spaces not distinguishing pointwise and quasinormal convergence of real functions, Bull. Polish Acad. Sci. Math. 45 (1997), 3 287-289. (1997) | MR 1477547