If $(\Omega,\Sigma,\mu)$ is a finite measure space and $X$ a Banach space, in this note we show that $L_{w^{\ast}}^{1}(\mu,X^{\ast})$, the Banach space of all classes of weak* equivalent $X^{\ast}$-valued weak* measurable functions $f$ defined on $\Omega$ such that $\|f(\omega )\| \leq g(\omega )$ a.e. for some $g\in L_{1}(\mu )$ equipped with its usual norm, contains a copy of $c_{0}$ if and only if $X^{\ast}$ contains a copy of $c_{0}$.
@article{119207, author = {Juan Carlos Ferrando}, title = {A note on copies of $c\_0$ in spaces of weak* measurable functions}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {761-764}, zbl = {1050.46512}, mrnumber = {1800168}, language = {en}, url = {http://dml.mathdoc.fr/item/119207} }
Ferrando, Juan Carlos. A note on copies of $c_0$ in spaces of weak* measurable functions. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 761-764. http://gdmltest.u-ga.fr/item/119207/
An averaging result for $c_{0}$-sequences, Bull. Soc. Math. Belg. 30 (1978), 83-87. (1978) | MR 0549653 | Zbl 0417.46019
Banach Spaces of Vector-Valued Functions, Lecture Notes in Math. 1676, Springer, 1997. | MR 1489231 | Zbl 0902.46017
Sequences and Series in Banach Spaces, GTM 92, Springer-Verlag, 1984. | MR 0737004
Linear Operators. Part I, John Wiley, Wiley Interscience, New York, 1988. | MR 1009162 | Zbl 0635.47001
Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159-186. (1974) | MR 0356155
Extremal structure of the unit ball of $L^p(\mu,X)$, J. Math. Anal. Appl. 200 (1996), 567-590. (1996) | MR 1393102
On Banach spaces containing $c_{0}$, Studia Math. 52 (1974), 187-188. (1974) | MR 0356156
Complemented copies of $\ell_{1}$ in $L_p(\mu,X)$, Math. Proc. Camb. Phil. Soc. 111 (1992), 531-534. (1992) | MR 1151329
A stability property of a class of Banach spaces not containing a complemented copy of $\ell_{1}$, Proc. Amer. Math. Soc. 84 (1982), 44-46. (1982) | MR 0633274